首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Humans show great variation in phenotypic traits such as height, eye color and susceptibility to disease. Genomic DNA sequence differences among individuals are responsible for the inherited components of these complex traits. Reports suggest that intermediate and large-scale DNA copy number and structural variations are prevalent enough to be an important source of genetic variation between individuals. Because association studies to identify genomic loci associated with particular phenotypic traits have focused primarily on genotyping SNPs, it is important to determine whether common structural polymorphisms are in linkage disequilibrium with common SNPs, and thus can be assessed indirectly in SNP-based studies. Here we examine 100 deletion polymorphisms ranging from 70 bp to 7 kb. We show that common deletions and SNPs ascertained with similar criteria have essentially the same distribution of linkage disequilibrium with surrounding SNPs, indicating that these polymorphisms may share evolutionary history and that most deletion polymorphisms are effectively assayed by proxy in SNP-based association studies.  相似文献   

2.
High-resolution haplotype structure in the human genome   总被引:41,自引:0,他引:41  
Linkage disequilibrium (LD) analysis is traditionally based on individual genetic markers and often yields an erratic, non-monotonic picture, because the power to detect allelic associations depends on specific properties of each marker, such as frequency and population history. Ideally, LD analysis should be based directly on the underlying haplotype structure of the human genome, but this structure has remained poorly understood. Here we report a high-resolution analysis of the haplotype structure across 500 kilobases on chromosome 5q31 using 103 single-nucleotide polymorphisms (SNPs) in a European-derived population. The results show a picture of discrete haplotype blocks (of tens to hundreds of kilobases), each with limited diversity punctuated by apparent sites of recombination. In addition, we develop an analytical model for LD mapping based on such haplotype blocks. If our observed structure is general (and published data suggest that it may be), it offers a coherent framework for creating a haplotype map of the human genome.  相似文献   

3.
4.
A high-resolution survey of deletion polymorphism in the human genome   总被引:20,自引:0,他引:20  
Recent work has shown that copy number polymorphism is an important class of genetic variation in human genomes. Here we report a new method that uses SNP genotype data from parent-offspring trios to identify polymorphic deletions. We applied this method to data from the International HapMap Project to produce the first high-resolution population surveys of deletion polymorphism. Approximately 100 of these deletions have been experimentally validated using comparative genome hybridization on tiling-resolution oligonucleotide microarrays. Our analysis identifies a total of 586 distinct regions that harbor deletion polymorphisms in one or more of the families. Notably, we estimate that typical individuals are hemizygous for roughly 30-50 deletions larger than 5 kb, totaling around 550-750 kb of euchromatic sequence across their genomes. The detected deletions span a total of 267 known and predicted genes. Overall, however, the deleted regions are relatively gene-poor, consistent with the action of purifying selection against deletions. Deletion polymorphisms may well have an important role in the genetics of complex traits; however, they are not directly observed in most current gene mapping studies. Our new method will permit the identification of deletion polymorphisms in high-density SNP surveys of trio or other family data.  相似文献   

5.
Islands of linkage disequilibrium   总被引:23,自引:0,他引:23  
A detailed knowledge of patterns of linkage disequilibrium in human populations is widely seen as a prerequisite for effective population-based disease gene mapping. New data suggest that linkage disequilibrium is highly structured into discrete blocks of sequence separated by hot spots of recombination.  相似文献   

6.
Detection of large-scale variation in the human genome   总被引:26,自引:0,他引:26  
We identified 255 loci across the human genome that contain genomic imbalances among unrelated individuals. Twenty-four variants are present in > 10% of the individuals that we examined. Half of these regions overlap with genes, and many coincide with segmental duplications or gaps in the human genome assembly. This previously unappreciated heterogeneity may underlie certain human phenotypic variation and susceptibility to disease and argues for a more dynamic human genome structure.  相似文献   

7.
Recombination and linkage disequilibrium in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Linkage disequilibrium (LD) is a major aspect of the organization of genetic variation in natural populations. Here we describe the genome-wide pattern of LD in a sample of 19 Arabidopsis thaliana accessions using 341,602 non-singleton SNPs. LD decays within 10 kb on average, considerably faster than previously estimated. Tag SNP selection algorithms and 'hide-the-SNP' simulations suggest that genome-wide association mapping will require only 40%-50% of the observed SNPs, a reduction similar to estimates in a sample of African Americans. An Affymetrix genotyping array containing 250,000 SNPs has been designed based on these results; we demonstrate that it should have more than adequate coverage for genome-wide association mapping. The extent of LD is highly variable, and we find clear evidence of recombination hotspots, which seem to occur preferentially in intergenic regions. LD also reflects the action of selection, and it is more extensive between nonsynonymous polymorphisms than between synonymous polymorphisms.  相似文献   

8.
Inversions, deletions and insertions are important mediators of disease and disease susceptibility. We systematically compared the human genome reference sequence with a second genome (represented by fosmid paired-end sequences) to detect intermediate-sized structural variants >8 kb in length. We identified 297 sites of structural variation: 139 insertions, 102 deletions and 56 inversion breakpoints. Using combined literature, sequence and experimental analyses, we validated 112 of the structural variants, including several that are of biomedical relevance. These data provide a fine-scale structural variation map of the human genome and the requisite sequence precision for subsequent genetic studies of human disease.  相似文献   

9.
10.
Linkage disequilibrium (LD), or the non-random association of alleles, is poorly understood in the human genome. Population genetic theory suggests that LD is determined by the age of the markers, population history, recombination rate, selection and genetic drift. Despite the uncertainties in determining the relative contributions of these factors, some groups have argued that LD is a simple function of distance between markers. Disease-gene mapping studies and a simulation study gave differing predictions on the degree of LD in isolated and general populations. In view of the discrepancies between theory and experimental observations, we constructed a high-density SNP map of the Xq25-Xq28 region and analysed the male genotypes and haplotypes across this region for LD in three populations. The populations included an outbred European sample (CEPH males) and isolated population samples from Finland and Sardinia. We found two extended regions of strong LD bracketed by regions with no evidence for LD in all three samples. Haplotype analysis showed a paucity of haplotypes in regions of strong LD. Our results suggest that, in this region of the X chromosome, LD is not a monotonic function of the distance between markers, but is more a property of the particular location in the human genome.  相似文献   

11.
The extent of linkage disequilibrium in Arabidopsis thaliana.   总被引:20,自引:0,他引:20  
Linkage disequilibrium (LD), the nonrandom occurrence of alleles in haplotypes, has long been of interest to population geneticists. Recently, the rapidly increasing availability of genomic polymorphism data has fueled interest in LD as a tool for fine-scale mapping, in particular for human disease loci. The chromosomal extent of LD is crucial in this context, because it determines how dense a map must be for associations to be detected and, conversely, limits how finely loci may be mapped. Arabidopsis thaliana is expected to harbor unusually extensive LD because of its high degree of selfing. Several polymorphism studies have found very strong LD within individual loci, but also evidence of some recombination. Here we investigate the pattern of LD on a genomic scale and show that in global samples, LD decays within approximately 1 cM, or 250 kb. We also show that LD in local populations may be much stronger than that of global populations, presumably as a result of founder events. The combination of a relatively high level of polymorphism and extensive haplotype structure bodes well for developing a genome-wide LD map in A. thaliana.  相似文献   

12.
Characterizing fine-scale variation in human recombination rates is important, both to deepen understanding of the recombination process and to aid the design of disease association studies. Current genetic maps show that rates vary on a megabase scale, but studying finer-scale variation using pedigrees is difficult. Sperm-typing experiments have characterized regions where crossovers cluster into 1-2-kb hot spots, but technical difficulties limit the number of studies. An alternative is to use population variation to infer fine-scale characteristics of the recombination process. Several surveys reported 'block-like' patterns of diversity, which may reflect fine-scale recombination rate variation, but limitations of available methods made this impossible to assess. Here, we applied a new statistical method, which overcomes these limitations, to infer patterns of fine-scale recombination rate variation in 74 genes. We found extensive rate variation both within and among genes. In particular, recombination hot spots are a common feature of the human genome: 47% (35 of 74) of genes showed substantive evidence for a hot spot, and many more showed evidence for some rate variation. No primary sequence characteristics are consistently associated with precise hot-spot location, although G+C content and nucleotide diversity are correlated with local recombination rate.  相似文献   

13.
The study of complex genetic traits in humans is limited by the expense and difficulty of ascertaining populations of sufficient sample size to detect subtle genetic contributions to disease. Here we introduce an application of a somatic cell hybrid construction strategy called conversion that maximizes the genotypic information from each sampled individual. The approach permits direct observation of individual haplotypes, thereby eliminating the need for collecting and genotyping DNA from family members for haplotype-based analyses. We describe experimental data that validate the use of conversion as a whole-genome haplotyping tool and evaluate the theoretical efficiency of using conversion-derived haplotypes instead of conventional genotypes in the context of haplotype-frequency estimation. We show that, particularly when phenotyping is expensive, conversion-based haplotyping can be more efficient and cost-effective than standard genotyping.  相似文献   

14.
Crossover between the human sex chromosomes during male meiosis is restricted to the terminal pseudoautosomal pairing regions. An obligatory exchange occurs in PAR1, an Xp/Yp pseudoautosomal region of 2.6 Mb, which creates a male-specific recombination 'hot domain' with a recombination rate that is about 20 times higher than the genome average. Low-resolution analysis of PAR1 suggests that crossovers are distributed fairly randomly. By contrast, linkage disequilibrium (LD) and sperm crossover analyses indicate that crossovers in autosomal regions tend to cluster into 'hot spots' of 1-2 kb that lie between islands of disequilibrium of tens to hundreds of kilobases. To determine whether at high resolution this autosomal pattern also applies to PAR1, we have examined linkage disequilibrium over an interval of 43 kb around the gene SHOX. Here we show that in northern European populations, disequilibrium decays rapidly with physical distance, which is consistent with this interval of PAR1 being recombinationally active in male meiosis. Analysis of a subregion of 9.9 kb in sperm shows, however, that crossovers are not distributed randomly, but instead cluster into an intense recombination hot spot that is very similar in morphology to autosomal hot spots. Thus, PAR1 crossover activity may be influenced by male-specific hot spots that are highly suitable for characterization by sperm DNA analysis.  相似文献   

15.
L Kruglyak 《Nature genetics》1999,22(2):139-144
Recently, attention has focused on the use of whole-genome linkage disequilibrium (LD) studies to map common disease genes. Such studies would employ a dense map of single nucleotide polymorphisms (SNPs) to detect association between a marker and disease. Construction of SNP maps is currently underway. An essential issue yet to be settled is the required marker density of such maps. Here, I use population simulations to estimate the extent of LD surrounding common gene variants in the general human population as well as in isolated populations. Two main conclusions emerge from these investigations. First, a useful level of LD is unlikely to extend beyond an average distance of roughly 3 kb in the general population, which implies that approximately 500,000 SNPs will be required for whole-genome studies. Second, the extent of LD is similar in isolated populations unless the founding bottleneck is very narrow or the frequency of the variant is low (<5%).  相似文献   

16.
The genome-wide distribution of linkage disequilibrium (LD) determines the strategy for selecting markers for association studies, but it varies between populations. We assayed LD in large samples (200 individuals) from each of 11 well-described population isolates and an outbred European-derived sample, using SNP markers spaced across chromosome 22. Most isolates show substantially higher levels of LD than the outbred sample and many fewer regions of very low LD (termed 'holes'). Young isolates known to have had relatively few founders show particularly extensive LD with very few holes; these populations offer substantial advantages for genome-wide association mapping.  相似文献   

17.
A new study reports a comprehensive survey of genetic diversity in natural populations of the nematode Caenorhabditis elegans. Their analyses suggest that recent chromosome-scale selective sweeps have reduced C. elegans genetic diversity worldwide and strongly structured genetic variation across its genome.  相似文献   

18.
Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号