共查询到11条相似文献,搜索用时 6 毫秒
1.
Against a background of heat-treatment operations in mould manufacturing, a two-stage flow-shop scheduling problem is described for minimizing makespan with parallel batch-processing machines and re-entrant jobs. The weights and release dates of jobs are non-identical, but job processing times are equal. A mixed-integer linear programming model is developed and tested with small-scale scenarios. Given that the problem is NP hard, three heuristic construction methods with polynomial complexity are proposed. The worst case of the new constructive heuristic is analysed in detail. A method for computing lower bounds is proposed to test heuristic performance. Heuristic efficiency is tested with sets of scenarios. Compared with the two improved heuristics, the performance of the new constructive heuristic is superior. 相似文献
2.
3.
This paper considers the job scheduling problem in which jobs are grouped into job families, but they are processed individually. The decision variable is the sequence of the jobs assigned to each machine. This type of job shop scheduling can be found in various production systems, especially in remanufacturing systems with disassembly, reprocessing and reassembly shops. In other words, the reprocessing shop can be regarded as the job shop with job families since it performs the operations required to bring parts or sub-assemblies disassembled back to like-new condition before reassembling them. To minimise the deviations of the job completion times within each job family, we consider the objective of minimising the total family flow time. Here, the family flow time implies the maximum among the completion times of the jobs within a job family. To describe the problem clearly, a mixed integer programming model is suggested and then, due to the complexity of the problem, two types of heuristics are suggested. They are: (a) priority rule based heuristics; and (b) meta-heuristics. Computational experiments were performed on a number of test instances and the results show that some priority rule based heuristics are better than the existing ones. Also, the meta-heuristics improve the priority rule based heuristics significantly. 相似文献
4.
The re-entrant flow shop scheduling problem considering time windows constraint is one of the most important problems in hard-disc drive (HDD) manufacturing systems. In order to maximise the system throughput, the problem of minimising the makespan with zero loss is considered. In this paper, evolutionary techniques are proposed to solve the complex re-entrant scheduling problem with time windows constraint in manufacturing HDD devices with lot size. This problem can be formulated as a deterministic Fm?|?fmls, rcrc, temp?|?Cmax problem. A hybrid genetic algorithm was used for constructing chromosomes by checking and repairing time window constraints, and improving chromosomes by a left-shift heuristic as a local search algorithm. An adaptive hybrid genetic algorithm was eventually developed to solve this problem by using fuzzy logic control in order to enhance the search ability of the genetic algorithm. Finally, numerical experiments were carried out to demonstrate the efficiency of the developed approaches. 相似文献
5.
We consider a total flow time minimisation problem of uniform parallel machine scheduling when job processing times are only known to be bounded within certain given intervals. A minmax regret model is proposed to identify a robust schedule that minimises the maximum deviation from the optimal total flow time over all possible realisations of the job processing times. To solve this problem, we first prove that the maximal regret for any schedule can be obtained in polynomial time. Then, we derive a mixed-integer linear programming (MILP) formulation of our problem by exploiting its structural properties. To reduce the computational time, we further transform our problem into a robust single-machine scheduling problem and derive another MILP formulation with fewer variables and constraints. Moreover, we prove that the optimal schedule under the midpoint scenario is a 2-approximation for our minmax regret problem. Finally, computational experiments are conducted to evaluate the performance of the proposed methods. 相似文献
6.
This study addresses a variant of job-shop scheduling in which jobs are grouped into job families, but they are processed individually. The problem can be found in various industrial systems, especially in reprocessing shops of remanufacturing systems. If the reprocessing shop is a job-shop type and has the component-matching requirements, it can be regarded as a job shop with job families since the components of a product constitute a job family. In particular, sequence-dependent set-ups in which set-up time depends on the job just completed and the next job to be processed are also considered. The objective is to minimize the total family flow time, i.e. the maximum among the completion times of the jobs within a job family. A mixed-integer programming model is developed and two iterated greedy algorithms with different local search methods are proposed. Computational experiments were conducted on modified benchmark instances and the results are reported. 相似文献
7.
8.
A branch and bound algorithm is described for optimal cyclic scheduling in a robotic cell with processing time windows. The objective is to minimise the cycle time by determining the exact processing time on each machine which is limited within a time window. The problem is formulated as a set of prohibited intervals of the cycle time, which is usually applied in the robotic cyclic scheduling problem with fixed processing times. Since both bounds of these prohibited intervals are linear expressions of the processing times, we divide these prohibited intervals into a series of the subsets and transform the problem into enumerating the non-prohibited intervals of cycle time in each subset. This enumeration procedure is completed by an efficient branch and bound algorithm, which could find an optimal solution by enumerating partial non-prohibited intervals. Computational results on the benchmark instances and randomly generated test instances indicate that the algorithm is effective. 相似文献
9.
This article investigates the criterion of minimizing total k-power completion time (TKCT) in flow shop and open shop scheduling. For these NP-hard problems, the asymptotic optimality of the shortest processing time-based algorithms is proven for a sufficiently large problem scale. To numerically evaluate the convergence of the algorithms, new lower bounds with performance guarantees are presented for the flow shop TKCT problem. Computational results demonstrate the performance of the proposed algorithms and the effectiveness of the nonlinear objective. In addition, theoretical results on the single-machine TKCT problem are obtained for mathematical deduction. 相似文献
10.
En-da Jiang 《国际生产研究杂志》2019,57(6):1756-1771
With the increasing attention on environment issues, green scheduling in manufacturing industry has been a hot research topic. As a typical scheduling problem, permutation flow shop scheduling has gained deep research, but the practical case that considers both setup and transportation times still has rare research. This paper addresses the energy-efficient permutation flow shop scheduling problem with sequence-dependent setup time to minimise both makespan as economic objective and energy consumption as green objective. The mathematical model of the problem is formulated. To solve such a bi-objective problem effectively, an improved multi-objective evolutionary algorithm based on decomposition is proposed. With decomposition strategy, the problem is decomposed into several sub-problems. In each generation, a dynamic strategy is designed to mate the solutions corresponding to the sub-problems. After analysing the properties of the problem, two heuristics to generate new solutions with smaller total setup times are proposed for designing local intensification to improve exploitation ability. Computational tests are carried out by using the instances both from a real-world manufacturing enterprise and generated randomly with larger sizes. The comparisons show that dynamic mating strategy and local intensification are effective in improving performances and the proposed algorithm is more effective than the existing algorithms. 相似文献
11.
This paper addresses preemption in just-in-time (JIT) single–machine-scheduling problem with unequal release times and allowable unforced machine idle time as realistic assumptions occur in the manufacturing environments aiming to minimise the total weighted earliness and tardiness costs. Delay in production systems is a vital item to be focussed to counteract lost sale and back order. Thus, JIT concept is targeted including the elements required such as machine preemption, machine idle time and unequal release times. We proposed a new mathematical model and as the problem is proven to be NP-hard, three meta-heuristic approaches namely hybrid particle swarm optimisation (HPSO), genetic algorithm and imperialist competitive algorithm are employed to solve the problem in larger sizes. In HPSO, cloud theory-based simulated annealing is employed with a certain probability to avoid being trapped in a local optimum. Taguchi method is applied to calibrate the parameters of the proposed algorithms. A number of numerical examples are solved to demonstrate the effectiveness of the proposed approach. The performance of the proposed algorithms is evaluated in terms of relative percent deviation and computational time where the computational results clarify better performance of HPSO than other algorithms in quality of solutions and computational time. 相似文献