首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
为了解决利用积分变换方法在求解Lord-Shulman(L-S)型广义热弹性耦合二维问题时由于数值反变换所引起的计算精度降低的问题,该文采用新近被应用的直接有限元方法,求解了基于L-S型广义热弹性理论的半无限大体受热冲击作用的动态响应问题,结果表明,该方法对求解L-S型广义热弹性耦合二维问题具有很高的精度。该文给出了L...  相似文献   

2.
基于新近提出的分数阶广义热弹性理论,研究了含有球型空腔的无限大体受热冲击作用时的动态响应。该文给出分数阶广义热弹性理论下的控制方程,通过拉普拉斯积分变换及其数值反变换对控制方程进行了求解,得到了带有球型空腔无限大体中的无量纲温度、位移、径向应力和环向应力等物理量的分布规律。计算中重点研究了分数阶参数对各物理量的影响效应。结果表明:含有球腔的无限大体内由于热冲击而出现了热弹耦合效应;分数阶参数显著地影响各物理量的分布规律。  相似文献   

3.
为了避免积分变换方法在求解Lord-Shulman(L-S)型广义热弹性耦合问题时由于数值反变换所引起的计算精度降低的问题,该文应用直接有限元方法,求解了基于L-S型广义热弹性理论的窄条薄板受热冲击作用的动态响应问题,结果表明,该方法对求解L-S型广义热弹性耦合的一维问题具有很高的精度。该文给出了L-S型广义热弹性理论下的热弹耦合的控制方程,建立了L-S型的广义热弹性问题的虚位移原理,推导得到了相应的有限元方程。计算得到了窄条薄板中无量纲温度、无量纲位移及无量纲应力的分布规律,从温度分布图上可以清晰地观察到热波波前的特有属性,即热波波前处存在明显的温度梯度的突变。  相似文献   

4.
侯鹏飞  骆伟  郭丽娟 《工程力学》2007,24(11):47-52,62
耦合均载作用下的简支空心和实心圆板问题是一个经典问题,对于电磁热弹性材料尚无理论解。构造了5个含有待定常数的单调和函数,将其代入用单调和函数表示的横观各向同性电磁热弹性材料的通解,获得了表面力电磁热耦合均载作用下的简支空心圆板内耦合场的解,再将所得解代入边界条件获得确定待定常数的线性方程组。该解可以退化得到实心圆板对应问题的解。所得各解都是用初等函数表示,非常方便于工程应用。算例比较了在相同热力载荷作用下,具有相同物理常数的热弹性空心圆板、压电热弹性空心圆板和电磁热弹性空心圆板内的弹性场。  相似文献   

5.
王颖泽  张小兵  宋新南 《工程力学》2012,29(11):313-318
考虑超急速传热过程中诱发的热冲击效应,基于L-S广义热弹性理论,建立了温度突变加热条件下热弹性响应的控制方程组。借助于Laplace正逆变换,在适当简化的条件下推导了一维超急速传热问题热弹性响应的解析表达式。通过对温度场、位移场及应力场的解析求解,给出了超急速传热过程中热波和热弹性波在弹性体内的传递规律,并指出在超急速传热条件下,由于热波和热弹性波的相互叠加作用削弱了热作用产生的热冲击效应。  相似文献   

6.
基于Ezzat型分数阶广义热弹性理论,引入Kelvin-Voigt黏弹性模型建立了黏弹性中空圆柱热弹耦合动力模型,探讨了黏弹性中空圆柱热弹耦合问题。中空圆柱体内外表面均有一定约束,且在其外表面处施加热冲击作用。给出Ezzat型分数阶双相滞后广义热弹性理论下问题的控制方程,结合Laplace变换和数值反变换技术对控制方程进行求解,最终得到中空圆柱中无量纲位移、温度、径向应力和环向应力的分布规律,并分析了黏弹性松弛时间因子和分数阶系数对各物理量的影响。结果表明:黏弹性松弛时间因子对于无量纲温度外的所有物理量均有明显影响,但对径向应力和环向应力的影响更为明显;分数阶系数对于所有物理量均有明显影响,在曲线峰值或谷值处影响最显著。  相似文献   

7.
研究旋转运动圆形薄板在磁场中受到机械载荷作用时的磁弹性非线性共振问题。根据哈密顿原理推导出旋转运动圆板在磁场中的磁弹性非线性振动方程,基于电磁理论给出了旋转板所受电磁力的表达式;通过位移函数的设定并应用伽辽金积分法,得到横向磁场中旋转导电圆板的磁弹性轴对称振动微分方程。应用平均法对系统非线性主共振问题进行求解,得到稳态运动下的幅频响应方程。通过数值计算,得到固支边界条件下圆板的幅频特性曲线以及振幅随磁感应强度、转速、激励力等参数的变化规律曲线图,分析了不同参数对旋转板共振幅值及非线性特性的影响。  相似文献   

8.
热载荷作用下大变形柔性梁刚柔耦合动力学分析   总被引:1,自引:0,他引:1  
从非线性应变-位移关系式出发,用虚功原理建立了热载荷作用的柔性梁的热传导方程和旋转刚体-梁系统的刚-柔耦合动力学方程.由于考虑了刚度阵的高次变形项,适用于大变形问题.对温度、弹性变形和刚体运动变量联合求解.研究了热流引起的温度梯度对弹性变形和刚体转动的影响,以及在大变形情况下的几何非线性效应.  相似文献   

9.
导出了广义洛仑兹力的具体表达式,建立了壳体的非线性轴对称磁弹性方程,并讨论了广义洛仑兹力对磁场和机械场共同作用下载流薄圆柱壳体的力学及电磁效应的影响.  相似文献   

10.
赵浩 《计量学报》2018,39(4):521-524
设计了一种基于霍尔效应的感应式瞬时旋转角速度传感器,主要包括定子铁心及绕组、霍尔元件和永磁转子3大部分,且永磁转子的磁通在空间气隙中呈正弦规律分布。传感器工作时,永磁转子与被测旋转设备同轴连接,永磁转子的磁场与定子绕组匝链耦合,绕组中产生与瞬时旋转角速度呈对应关系的感应电动势。由于定子绕组与霍尔元件的控制端直接连接,则霍尔元件中存在电流,在永磁转子磁场的作用下,霍尔元件产生与瞬时旋转角速度成正比的直流霍尔电势。推导了传感器的输出特性,并对传感器进行了特性测定实验,结果表明其灵敏度系数约为203 mV/(rad·s-1),线性误差约为0.5%。  相似文献   

11.
Summary. This paper studies the problem of two-dimensional electromagneto-thermovisco-elasticity based on Lord-Shulman theory for a thermally and electrically conducting half-space solid whose surface is subjected to a thermal shock. There acts an initial magnetic field parallel to the plane boundary of the half-space. The medium deforms because of thermal shock and due to the application of the magnetic field, it results in induced magnetic and electric fields in the medium. The normal mode analysis is used to obtain the exact expressions for the considered variables. The distributions of the temperature, displacement, stress, induced magnetic and electric fields are represented graphically. Comparisons are made with the results predicted by both the coupled theory and with the theory of generalized thermo-viscoelasticity with one relaxation time.  相似文献   

12.
A new model of the equations of generalized thermoviscoelasticity for a thermally, isotropic and electrically conducting half-space solid whose surface is subjected to a thermal shock is given. The formulation is applied to the generalized thermoelasticity based on the Green and Naghdi (GN) theory under the effect of rotation, where there is an initial magnetic field parallel to the plane boundary of the half-space. The medium is deformed because of thermal shock and due to the application of the magnetic field, it results in induced magnetic and electric fields in the medium. The normal mode analysis is used to obtain the expressions for the variables considered. The distributions of temperature, displacement, stress, induced magnetic and electric fields are represented graphically. Comparisons are made with the results predicted by the types II and III in the presence and absence of rotation.  相似文献   

13.
The problem of fully coupled thermoelasticity in a composite half-space is considered where the composite has variations in its physical properties in one direction only. The resulting one-dimensional problem thus depends on the so-called microscale of the composite. Homogenization of the fully coupled theory provides the leading-order system of coupled equations (independent of the microscale) together with the effective physical properties of the thermoelastic medium. In particular, the effective coupling parameter δ* is found and it is shown to exhibit rather interesting properties; for a range of volume fractions in two-phase composites it is shown that δ* lies below the corresponding coupling parameter for a homogeneous material made up of either phase. Transient boundary-value problems of the homogenized system are then solved and compared with the classical problem of a homogeneous half-space. The magnitude of resulting discontinuities in field variables and their derivatives are found and their dependence on the effective coupling parameter is exhibited.  相似文献   

14.
The present study solves the problem of thermoelastic interactions in a half-space medium under hydrostatic initial stress in the context of a fractional order heat conduction model with two-temperature theory. The analytical solutions of the field variables are obtained by using the normal mode analysis. The obtained solutions are then applied to a specific problem for a thermally insulated surface which is acted upon by a load. The distributions of the two temperatures, displacements, and the stress components inside the half-space are studied. The graphical results depict that the fractional parameter has significant effects on all the studied field variables. Comparisons are made within the theory in the presence and absence of the hydrostatic initial stress. Thus, we can conclude that the fractional order generalized thermoelasticity model may be an improvement on studying elastic materials.  相似文献   

15.
This paper presents a perturbation method for the solution of the electromagnetic and thermal problems of a deformed sphere levitated in an alternating magnetic field. The analytical solutions of the electromagnetic field distribution, the Joule heat generation, the magnetic lifting force and the temperature field are obtained based on a linear perturbation theory. The Maxwell equations are first simplified in terms of the vector potential and then solved by the method of separation of variables. The time-averaged Joule-heat source is calculated and coupled to the Fourier heat-conduction equation. The coupled equation is solved for temperature distributions within the deformed sphere by a combined approach of series expansion and variation of parameters. Both asymptotic and numerical analyses are provided. The total power absorption and temperature field for both single and multiple coils are also discussed.  相似文献   

16.
The present paper is concerned with the wave propagation in a micropolar thermoelastic solid with distinct two temperatures under the effect of the magnetic field in the presence of the gravity field and an internal heat source. The formulation of the problem is applied in the context of the three-phase-lag model and Green-Naghdi theory without dissipation. The medium is a homogeneous isotropic thermoelastic in the half-space. The exact expressions of the considered variables are obtained by using normal mode analysis. Comparisons are made with the results in the two theories in the absence and presence of the magnetic field as well as the two-temperature parameter. A comparison is also made in the two theories for different values of an internal heat source.  相似文献   

17.
The influence of variation in physical variables on the steady Hartmann flow with heat transfer is studied. An external uniform magnetic field is applied perpendicular to the parallel plates and the fluid is acted upon by a constant pressure gradient. The viscosity and the thermal and electric conductivities are assumed to be temperature dependent. The two plates are kept at two constant but different temperatures and the viscous and Joule dissipations are considered in the energy equation. A numerical solution for the governing non‐linear coupled equations of motion and the energy equation is obtained. The effect of magnetic field, the temperature dependent viscosity, thermal conductivity, and electric conductivity on both the velocity and temperature distributions is examined. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A three-dimensional problem for a homogeneous, isotropic and thermoelastic half-space subjected to a time-dependent heat source on the boundary of the space, which is traction free, is considered in the context of Green and Naghdi model II (thermoelasticity without energy dissipation) of thermoelasticity. The normal mode analysis and eigenvalue approach techniques are used to solve the resulting non-dimensional coupled equations. Numerical results for the temperature, thermal stress, strain and displacement distributions are represented graphically and discussed.  相似文献   

19.
In this article, two theories of the generalized thermoelasticity Green-Naghdi theory (of type II and III) are applied, as well as the coupled theory to study the effect of magnetic field and rotation under influence of gravity on 2D problem of a fibre-reinforced thermoelastic. The normal mode analysis is used to obtain the expressions for the temperature, displacement components and the thermal stresses distributions. The resulting formulation is applied for two different concrete problems. The first concerns the case of a punch moving across the surface of semi-infinite thermoelastic half-space subjected to appropriate boundary conditions. The second deals with a thick plate subjected to a time-dependent heat source on each face. Numerical results are illustrated graphically for each problem considered. A comparison is made with the results predicted obtained by the two theories in the presence and absence of magnetic field, rotation and gravity field.  相似文献   

20.
Abstract

This work presents a refined multi-phase-lags theory for thermoelastic response of half-space medium with the inclusion of gravity. The wave propagation of a gravitated piezo-thermoelastic half-space has been presented. Additional equation for the piezoelectric material is added to get four partial differential equations. All coupled equations have been resolved exactly due to the normal mode model. A harmonic wave solution is adopted to derive the main variables of the medium. The displacements, temperature, and electric potential have been obtained. Consequently, the electric displacements and thermomechanical stresses have been also obtained. A comparison is made to show the dependency of all field on the inclusion of gravity. Most fields are very sensitive to the variation of the gravity factor. Results are tabulated to serve as benchmarks for future comparisons and other results have been displayed to show the physical meaning of the phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号