首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高速连铸用保护渣   总被引:7,自引:0,他引:7  
张贺林  朱果灵 《炼钢》1992,8(3):47-53
论述与高速连铸密切相关的保护渣技术,指出高速连铸与常速连铸用保护渣在其物性上有较大差异。高速连铸保护渣应具有较低的粘度,较低的结晶温度,较低的软化及熔融温度、合适的碱度和较快的熔化速度。配制高速连铸保护渣时应限制CaF_2、Na_2O的加入量,适当添加BaO、B_2O_3、Li_2O、K_2O、MgO等的助熔剂是有益的。  相似文献   

2.
韩刚  甘永年 《钢铁钒钛》1990,11(4):14-20
采用旋转动力学实验方法,模拟研究了含钛不绣钢连铸时熔融保护渣吸收TiO_2夹杂物的过程,探讨了CaO-SiO_2-CaF_2-BaO系渣中,CaF_2,BaO,TiO_2,Na_2B_4O_7,碱度(CaO/SiO_2)等因素对熔渣吸收TiO_2的速度以及CaTiO_3析出倾向的影响。  相似文献   

3.
高速连铸用保护渣   总被引:5,自引:0,他引:5  
本文论述了与高速连铸密切相关的保护渣技术。指出高速连铸与常速连铸用保护渣在其物理性能上有较大差异。高速连铸保护渣应具有较低的粘度,较低的结晶、软化及熔融温度,合适的碱度以及较快的熔化速度。配制高速连铸保护渣时应限制CaF_2,Na_2O的加入量,适量添加BaO,B_2O_3,Li_2O,K_2O和MgO等助熔剂是有益的。  相似文献   

4.
本文利用10 kg级保护气氛电渣重熔炉,研究了两种电渣重熔渣系对C-HRA-3耐热合金电渣锭夹杂物数量、尺寸、分布规律的影响。结果表明,60%CaF2-20%Al2O3-10%CaO-10%MgO渣系的液相线温度为1 417℃,新型50.4%CaF2-26.1%Al2O3-19.5%CaO-4%MgO渣系的液相线温度为1 324℃,且固液两相区的温度区间较窄,液态熔渣的电阻率高,可实现C-HRA-3合金电渣重熔的高熔速稳定冶炼。两种渣系冶炼的电渣锭中,夹杂物主要包括氧化物、碳氮化物和硫化物等类型,电渣锭边缘位置夹杂物数量与自耗电极相近,电渣锭边缘到中心位置夹杂物数量呈现出逐渐减少的趋势。两种渣系冶炼的电渣锭中,氧化物夹杂的平均尺寸分别为3.019μm和2.341μm。新型渣系冶炼的电渣锭中,沿径向不同位置处,尺寸>3μm的氧化物夹杂数量占比均更小,对C-HRA-3合金大尺寸氧化物夹杂具有更显著的去除效果。  相似文献   

5.
以某铜冶金艾萨熔炼炉余热锅炉辐射区结渣为研究对象,研究了Al_2O_3在高温下对渣样熔融特性的影响。结果表明,渣样熔融温度随着Al_2O_3比例(1%~16.7%)的提高而提高,当Al_2O_3达到16.7%、温度1 370℃时,渣样并没有出现软化状态。添加16.7%的Al_2O_3的渣样在1 100℃灼烧1h,渣样中大部分仍为Fe3O4,只有微弱的铁铝尖晶石峰出现;当灼烧温度达到1 200℃时,铁铝尖晶石的特征峰较为明显,即生成了大量铁铝尖晶石。通过FactSage 7.2进行的热力学反应平衡计算结果与XRD结果一致。  相似文献   

6.
保护渣性能对连铸圆坯表面质量的影响   总被引:1,自引:0,他引:1  
在圆坯连铸实际生产数据的基础上 ,综合分析了保护渣粘度、熔化温度、熔速对圆坯表面纵裂和凹坑的影响。为防止圆坯产生表面缺陷 ,必须将保护渣性能调整到合适的范围。2 10 m m圆坯合适的保护渣粘度为 0 .6~ 1.1Pa· s、熔化温度为 1130~ 12 30℃、熔速为 4 0~ 5 0 s;2 70 m m圆坯合适的保护渣粘度为 0 .6~1.0 Pa· s、熔化温度为 12 0 0~ 12 70℃、熔速为 6 0~ 80 s  相似文献   

7.
为了研究适合莱钢100 t大断面圆坯的中碳钢保护渣,选择3种中碳钢保护渣(A型、B型、C型),在钢水条件几乎相同,结晶器锥度设置和液位设置相同的情况下,在莱钢大圆坯连铸机上进行应用试验并对使用性能进行比较分析。结果表明,A型渣产生的温度分布整体性较好,B型渣的温度分布与C型渣相似,但其低温区域面积较大,热流数据与C型渣相比有所下降;3种保护渣吨钢消耗、熔融层厚度、对水口的侵蚀以及对钢种质量的影响相当。A型保护渣使用性能最好。大圆坯连铸浇注中碳钢应选择碱度适中、黏度大、熔化温度高的保护渣。  相似文献   

8.
对5种薄板坯连铸保护渣化学成分、熔化温度、熔化速度、结晶温度和矿物组成进行了试验研究和理论分析,结果表明现行薄板坯连铸保护渣熔化温度为1057~1131℃,熔化速度为19.3~61.1s,结晶温度为1058~1142℃,凝固渣样的矿物组成以硅灰石和少量黄长石为主,且随着碱度的提高,渣样的玻璃化率急剧降低。综合各种性能和工艺要求,渣A除熔化速度需要调整外,其它性能均较适于薄板坯连铸需要。  相似文献   

9.
为实现煤造气炉液态排渣,利用灰熔点测定仪研究了Ca O、Fe_2O_3和Na_2O 3种添加剂对煤灰熔融性能的影响。结果表明,随着Ca O添加量的增加,煤灰流动温度先降低后升高,Ca O添加量为20%时,流动温度达到最低;随着Fe_2O_3添加量的增加,煤灰流动温度逐渐降低;煤灰流动温度随着Na_2O添加量的增加而逐渐降低,当Na_2O添加量由0增加至5%时,煤灰流动温度降低幅度较大,继续增加Na_2O的添加量时,其对煤灰流动温度的降低作用减弱,Na_2O对煤灰软熔区间的降低作用最强。随着Na_2O添加量的增加,煤灰渣的黏度和熔化性温度都逐渐降低。综合考虑,建议选取Na_2O作为添加剂,添加量为5%~7%。  相似文献   

10.
南朝鲜浦项钢铁公司光阳钢铁厂的大型板坯连铸机,为提高连铸坯的质量和减少由粘结性拉漏而造成的废钢量,开发出一种连铸结晶器用新型保护渣。这种保护渣的化学成分为:30.3% CaO,29.5% SiO_2,6.1% Al_2O_3,12.9% Na_2O,8.1% F,3.7%C。这种保护渣的物理性能为:软化温度1045℃,熔化温度为1050℃,流动温度为1055℃,保护渣在1300℃下的粘度为0.5×10~(-1)Pa.s。  相似文献   

11.
针对特钢厂4机4流连铸机生产的2Cr13、3Cr13、4Cr13铸坯表面凹陷、纵裂缺陷进行分析和研究,通过工艺措施解决了Cr13型马氏体不锈钢铸坯的表面凹陷和纵裂问题。采用预熔型保护渣,其中SiO2和CaO均为28%~31%、Al2O3为6%~9%、Na2O为7%~10%、F-为3%~6%,以及综合配碳,尤其是增加炭黑的加入量,总C含量为15%~18%。保护渣碱度控制在1.0左右,熔化温度为1130~1150℃,1300℃时黏度为0.40~0.55 Pa·s;保护渣转折温度为1140~1180℃,结晶率约为48.8%。控制中间包内2Cr13钢液过热度≤30℃,3Cr13和4Cr13钢液过热度≤35℃;连铸过程中采用自动加渣方式,控制适宜的渣层厚度并保持液面稳定。  相似文献   

12.
本研究在200~1000℃范围内对单独添加NaCl以及同时添加Na_2CO_3和NaCl焙烧钒渣时镓的氯化挥发规律进行了探索。只添加NaCl与钒渣混合焙烧,镓挥发率(ηGa)随NaCl添加量增加而提高,但提高趋势不大,且钒转化为水溶性的比率很小。同时添加Na_2CO_3和NaCl与钒渣混合焙烧,在配料比W钒渣/(W_(Na_2CO_3)+W_(NaCl)))=8/2,W_(Na2CO_3)/W_(NaCl)=2时,800℃下焙烧1h,钒转化率为85%,ηGa=30%,效果较好;ηGa随焙烧温度升高而增加,但为保证钒转化率,焙烧温度应控制在800~900℃之间。  相似文献   

13.
赵忠宇  赵俊学  王泽  谭泽馨  屈波樵  崔雅茹 《炼钢》2020,36(5):75-78,84
以电渣重熔用含氟渣、连铸含氟保护渣,以及传统CaF_2-CaO精炼渣作为典型炼钢渣系,通过热重(TG)和质谱(MS)检测对各渣系挥发行为做出分析。结果表明:电渣重熔用含氟渣在1 300℃以上剧烈挥发,挥发分主要为CaF_2、MgF_2以及少量SiF_4、AlF_3。连铸含氟保护渣挥发过程分为两个阶段,第一阶段(750~1 200℃)主要为CaF_2与Na_2O、SiO_2反应生成NaF和SiF_4气体,同时伴随少量Na_2O的蒸发;第二阶段(大于1 300℃)挥发过程为CaF_2的蒸发。对于CaF_2-CaO基精炼渣,在共晶点(84%CaF_2-16%CaO)处,CaF_2的蒸发现象最为剧烈。该项研究对炼钢过程炉渣成分、性能控制以及冶金环保具有指导意义。  相似文献   

14.
以攀枝花含钛高炉渣为原料,采用氢氧化钠碱熔法分离炉渣中的有价组分,通过对碱熔过程中不同反应阶段所形成的碱熔渣及水浸渣的结构和谱学特征进行分析和表征,研究不同温度条件下原始矿物相及中间产物的化学反应过程,揭示含钛高炉渣碱熔过程中各有价组分赋存状态的变化。结果表明:在碱熔过程中,283℃时,含钛高炉渣中透辉石相结构被破坏,Si~(4+)离子形成Na_2SiO_3可溶性盐和中间产物CaMgSiO_4,随着反应的进行,CaMgSiO_4进一步与NaOH发生反应生成难溶物Na_2CaSiO_4;当碱熔温度升高到296℃时,镁铝尖晶石中Si~(4+)与NaOH反应生成可溶性盐Na_2SiO_3;当碱熔温度为320℃时,钙钛矿晶体结构开始被破坏,Ti~(4+)离子与NaOH作用生成难溶物Na_2TiO_3,经水浸后Na_2TiO_3晶形被破坏,变为无定型结构残留于水浸渣中。  相似文献   

15.
通过单向加热炉模拟保护渣在结晶器内的熔化过程,研究了6种碳质材料对保护渣熔化速度和熔融结构的影响。结果表明:含量相同时对保护渣熔化速度的控制作用最强的是超细石墨,而后依次是半补强炭黑、390石墨、中超炭黑、土状石墨、增碳剂;配碳方式相同时,保护渣的熔化温度越高,其熔化速度越慢;采用炭黑加石墨的配碳方式时保护渣的烧结层厚度随碳含量增加而减薄,且若炭黑量小于2%时形成多层熔融结构,否则将形成不含半熔层的3层结构。  相似文献   

16.
高铝钢连铸过程中,为了避免或减轻钢液中Al与保护渣中SiO2发生反应,设计了低SiO2、高Al2O3含量的高铝钢连铸保护渣,通过添加适量的酸性氧化物B2O3协调熔渣酸碱性,利用实验分析了B2O3含量对高铝钢保护渣熔融特性、黏度特性及渣膜传热特性的影响.结果表明,B2O3含量在4%~10%时,随着B2O3含量增加,保护渣熔化温度、黏度、黏流活化能均降低,渣膜热流密度增加;保护渣的等温转变曲线(TTT曲线)向孕育时间增加的方向移动,晶体生长速率降低;实验条件下,增加B2O3含量可抑制保护渣中CaF2的析出.  相似文献   

17.
《特殊钢》2017,(2)
连铸保护渣玻璃体渣膜回温结晶现象对渣膜的热阻有重要影响。采用SHTT-Ⅱ型熔化结晶温度测定仪并结合金相显微镜,研究碱度(R0.8~1.4)对保护渣(/%:28.22~49.73CaO,35.52SiO_2,4.00Na_2O,2.14MgO,14.55Al_2O_3,0.72TiO_2,0.93Fe_2O_3,0.32K_2O,0.32MnO_2,2.03CaF_2,6.18C)的结晶率的影响,构建了TTT曲线,计算了不同碱度下保护渣形核活化能,观察了在800,900,1000℃回温处理下不同碱度保护渣表面形貌。实验结果表明,随着碱度增加保护渣结晶温度和形核活化能不断降低;随着玻璃体渣膜回温处理温度的升高,玻璃渣膜表面出现凸起、凹坑以及大量的内部缺陷;提出合适的碱度范围为:低碳钢0.80~0.95,中碳钢≥1.2,高碳钢0.75~0.90。  相似文献   

18.
我厂盛钢桶容量为200吨,镇静钢采用8.3吨钢锭模,注车120吨,每组可同时浇注4~5锭,前一个时期在浇注时模内使用的保护渣是由黑龙江省鸡西柳毛石墨矿生产的柳毛石墨,很不经济。 1970年我厂注锭老工人提出用炉灰渣代替柳毛石墨。因为炉灰渣有一部分被居民回收进  相似文献   

19.
试验和分析了全封闭气罩氩气保护电渣重熔与常规大气下电渣重熔铁路用G20CrNi2MoA渗碳轴承钢(/%:0.19C、0.49Cr、1.75Ni、0.23Mo、0.071Al)的冶金效果。结果表明,氩气保护电渣重熔锭Si和Mn的烧损量(3%~12%和4%~10%)低于常规电渣重熔锭Si和Mn的烧损量(15%~18%和7%~10%);当G20CrNi2MoA钢电极的氧含量为10×10-6时,氩气保护电渣锭的氧含量(15×10-6)低于常规电渣锭的氧含量(21.3×10-6);氩气保护电渣锭的冶金质量明显优于未经气体保护的常规电渣锭。  相似文献   

20.
采用传统"半球点"测定法对连铸保护渣进行熔化温度检测,对比无氟渣在不同升温速率下熔化温度检测值差异,结果表明连铸保护渣熔化温度检测值随升温速率增大而降低,挥发的影响要远大于分熔的影响。采用二次回归正交设计试验方案,建立了关于碱度、Al_2O_3、CaF_2、Na_2O、MgO等组元变化的熔化温度非线性回归模型,测绘出关于助熔剂(Na_2O+CaF_2)组成变化的连铸保护渣熔化温度等值图,基于挥发影响对熔化后试样做XRF成分分析,对熔化温度回归模型和熔化温度等值图进行修正,对比得出,熔化温度检测过程Na_2O和CaF_2成分显著降低,熔化温度检测值相对理论值偏高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号