首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
对高温处理前后螺旋炭纤维的微观拓扑结构进行了探究与表征,结果表明,制备态螺旋炭纤维具有类似年轮状结构的近圆形横截面,在纵截面上体现为近似鲱鱼骨结构,其石墨微晶尺寸小、取向度差;高温处理后,其三维结构可理想地看作是由石墨微晶以具有锥角的多面柱体形式沿螺旋方向堆叠而成,表观上炭纤维显示为尺寸均匀的多面柱体形貌。X射线衍射和Raman散射结果从宏观量级上证明了样品微观尺度有序度得到提高。为基于结构的性能预测和应用设计提供了可靠的参考。  相似文献   

2.
以乙炔为碳源,镍粉为催化剂,噻吩为助催化剂,采用化学气相沉积法制备微螺旋炭纤维;在氩气气氛中,2500℃下对所制微螺旋炭纤维进行石墨化处理.通过扫描电子显微镜观察微螺旋炭纤维的螺旋形貌和微观结构,用热重法研究微螺旋炭纤维的耐氧化性能,并探讨了微螺旋炭纤维的氧化动力学行为.结果表明:石墨化处理对微螺旋炭纤维具有显著的纯化作用,其螺旋形貌基本保持不变.微螺旋炭纤维的氧化反应较好地服从一级反应.微螺旋炭纤维石墨化前后的氧化反应活化能分别为263.004kJ/mol和297.191kJ/mol.石墨化处理明显提了微螺旋炭纤维的抗氧化性能.  相似文献   

3.
石墨化温度对炭纤维微观结构及其力学性能的影响   总被引:12,自引:7,他引:12  
以通用型PAN基炭纤维为原材料,通过1800℃~3000℃连续高温石墨化处理,制备了不同性能的炭(石墨)纤维;采用SEM、XRD、RAMAN、元素分析仪、万能材料测试机等分析手段研究了石墨化温度对炭(石墨)纤维微观结构、元素含量、表面形态及其力学性能的影响。实验表明:随着热处理温度的提高,炭纤维中非碳元素(氮、氢)的含量逐渐减少而碳元素质量分数却从92.62%增加到99.99%;纤维的微观结构也从二维乱层石墨结构向有序的三维层状结构发展,表现为石墨晶体层间距d。随处理温度的提升逐渐减小、d100和d110与La和Lc不断增大,纤维抗拉强度呈下降趋势、弹性模量呈上升趋势。  相似文献   

4.
螺旋炭纤维的微观结构与储能特性   总被引:12,自引:4,他引:8  
采用扫描电镜、激光Raman光谱、X射线衍射(XRD)、热失重分析(TG)、低温氮吸附等研究手段,以平直炭纤维为参照,对比研究了碳氢化合物催化分解法制备的螺旋型炭纤维的微观结构特征。实验结果表明:整体上,螺旋炭纤维的微观结构要比平直炭纤维的结构更加无序;但螺旋炭纤维的外层结构较为有序与中孔分布广、孔容低的平直炭纤维不同,螺旋炭纤维的中孔主要分布在3nm~4nm范围内.且有着较高的孔容,其比表面积几乎足平直碳纤维的10倍。这些结构特性使得螺旋炭纤维在抗氧化性、储氨、电化学电容等方面都体现出超越平直炭纤维的优势和应用潜力。  相似文献   

5.
采用间接法将硼引入炭纤维(CF)中,即先将硼引入石墨坩埚中,然后将CF放到坩埚中,升温进行石墨化处理,石墨坩埚中的硼扩散出来,进入纤维中,借助硼的催化石墨化特性,从而制备出硼掺杂石墨纤维。研究硼含量对炭纤维力学性能的影响。利用X射线光电子能谱、X射线衍射、拉曼光谱、扫描电子显微镜、高分辨透射电子显微镜对所制石墨纤维中的硼含量、结构和形貌进行表征和分析。结果表明:石墨纤维中的硼含量可控,硼的催化石墨化作用,提高了CF的石墨化度,由于硼的固溶特性引入了一些缺陷,使得CF的微结构和力学性能发生变化;通过调控CF中的硼含量(0.58%-0.68%),能够在CF强度不损失的情况下提高其模量。  相似文献   

6.
借助XRD和力学测试研究了不同石墨化温度下牵伸率(0%~2.5%)对PAN基石墨纤维结构和力学性能的影响。结果表明:在2400℃、2700℃和3000℃石墨化温度下,分别采用1.25%,1.50%和2.20%的牵伸率,可获得的抗拉强度最大值相应为3.1GPa、2.55GPa和2.25GPa。在相同的石墨化温度下与未牵伸的样品相比,抗拉强度提高了10%-20%。弹性模量亦随牵伸率的增大而增加,在牵伸率为2.50%时,弹性模量上升15%。同时,石墨微晶尺寸Lc(3.612nm~7.094nm)和La(12.909nm~24.400nm)及取向度逐渐增大,而d002,(0.3465nm~0.3418nm)逐渐减小。微观结构的改善是石墨纤维抗拉强度和弹性模量提高的主要原因。  相似文献   

7.
热处理温度对PAN基炭纤维结构的影响   总被引:3,自引:0,他引:3  
利用SEM观察了3种PAN基炭纤维(TX-63、T300、T700)热处理前和经不同温度热处理后的表面形貌,并测试了其石墨化度、Lc和d002值,以研究热处理温度对炭纤维表面和内部微观结构的影响。结果表明:TX-3、T300炭纤维表面本身有不规则沟槽、凸起和缺陷等,T700炭纤维表面比较圆滑,随着热处理温度升高,PAN基炭纤维的表面形貌发生明显的变化,尤其是2700℃处理后炭纤维表面的褶皱相对较浅而小;石墨化度与Lc随热处理温度升高而增大,d002值则呈减小趋势,说明热处理温度对炭纤维的表面和内部结构有显著影响。  相似文献   

8.
硅化处理对炭纤维石墨化度的影响   总被引:1,自引:0,他引:1  
对炭纤维在真空炉中进行2100℃硅化处理.用SEM分析了炭纤维在硅化处理前后表面形貌的变化,利用能谱测定了其硅化处理后的成分变化并加以分析,用X射线衍射分析了热处理和硅化处理后的炭纤维石墨化度的变化.结果表明:处理后的炭纤维出现富C的SiC表层,内部为含有SiC的C芯,并伴随有类球状SiC颗粒的形成.沿炭纤维径向分布的SiC含量呈现梯度分布,其芯部的SiC含量为2.46%(质量分数,下同),靠近表层的SiC含量增加到7.53%,表面的SiC含量达到13.25%;纤维表面的类球状颗粒为含C的SiC颗粒,其中SiC的含量为30.55%.在2100℃热处理的炭纤维石墨化度几乎为0,而在2100℃硅化处理的炭纤维石墨化度高达48.5%.  相似文献   

9.
采用溶剂热法合成出硫化镍, 并将其作为催化剂, 催化热解乙炔制备出微螺旋炭纤维. 通过SEM、FT-IR和XRD分析了催化剂和微螺旋炭纤维的形貌和微观结构. 结果表明: 硫化镍催化颗粒表面光滑、为规则的六方相结构, 直径为1~2 μm; 微螺旋炭纤维具有双螺旋结构, 截面为矩形, 具有相同的螺径. 微螺旋炭纤维分子结构中既含有不饱和的C=C双键, 又含有饱和的-CH2-和-CH3基团, 其微观结构整体有序度较差, 存在一定量的无定型炭和晶体缺陷, 石墨化度低.  相似文献   

10.
螺旋炭纤维的结构分析   总被引:8,自引:0,他引:8  
分析了螺旋炭纤维的微观结构,发现其主要由纳米级石墨片层(nano graphite structurecell,NGSC,约为5 nm×5 nm)构成,其间夹杂着无定形碳和多层富勒烯等无序结构.由于螺旋炭纤维具有螺旋结构,其中的NGSC发生了一定的弯曲.在宏观尺度上,螺旋炭纤维表现出无序碳结构的特征.根据结构分析的结果提出了表征螺旋炭纤维的几何参数,并对不同螺旋炭纤维的螺旋角进行了比较分析.结果表明,虽然螺旋炭纤维的直径和螺距各不相同,但是其螺旋角具有一定的规律.在微观结构观察和几何构形分析的基础上提出了螺旋炭纤维的生长机理.  相似文献   

11.
微螺旋炭纤维结构性能的研究   总被引:1,自引:0,他引:1  
毕辉  寇开昌  张教强 《材料导报》2007,21(5):118-120,128
微螺旋炭纤维因其特殊的三维手性结构,具有多种优异性能.综述了微螺旋炭纤维的微观形貌、力学性能、电性能、热性能、吸波性能和储气性能,并展望了螺旋炭纤维的应用前景,同时也总结了螺旋炭纤维研究中存在的问题.  相似文献   

12.
螺旋形手征碳纤维的微波介电特性   总被引:20,自引:2,他引:20  
研究了线圈状和麻花状两种典型螺旋形手征碳纤维以及直线形碳纳米管在8.2-12.4GHz的微波介电特性.螺旋形手征碳纤维通过催化化学气相沉积法制备,直线形碳纳米管用催化裂解浮游法以苯为碳源制备.螺旋形手征碳纤维与石蜡复合体的介电常数的实部(ε′)和虚部(ε″)比直线形碳纳米管与石蜡复合体的小,但线圈状螺旋形碳纤维的介电损耗角正切(tgδ=ε″/ε′)却明显偏大,线圈状和麻花状螺旋形碳纤维的tgδ分别为0.77—0.80和0.47—0.53,直线形碳纳米管的tgδ为0.45-0.77.螺旋形碳纤维与微波作用时的手征特性是导致其tgδ增大的主要原因,螺旋形手征碳纤维对微波的吸收与其自身的形状和尺寸密切相关,所以线圈状螺旋形碳纤维的tgδ比麻花状的大得多,探讨了螺旋形手征碳纤维与微波的作用机理,螺旋形手征碳纤维是一种非常有发展前景的微波吸收材料.  相似文献   

13.
使用国产聚丙烯腈基碳纤维进行石墨化实验,制备高模量的碳纤维。使用X光衍射和拉曼光谱的方法对晶体结构进行了表征,讨论了石墨化工艺参数,包括石墨化温度以及牵引张力大小对晶体结构的影响。实验发现:高温石墨化辅助牵伸石墨化是有效的方法提高石墨化度制备得到石墨化碳纤维。本文使用国产碳纤维在2700℃以及牵伸为1.5%时制备得到了杨氏模量为356GPa的高模量碳纤维。  相似文献   

14.
李宁  寇开昌  晁敏  吴广磊  张冬娜  侯梅 《材料导报》2012,26(8):69-71,84
利用溶剂热法制备了硫化镍,并以它为催化剂通过化学气相沉积法催化制备了微螺旋碳纤维。采用扫描电子显微镜对微螺旋碳纤维的微观形貌进行了表征,发现产物几乎全部为双螺旋碳纤维,同时通过研究影响微螺旋碳纤维生长的因素,发现微螺旋碳纤维的最佳生长条件为:反应温度750℃,气体流量110sccm,噻吩温度30~35℃,反应时间90min。FT-IR结果表明,微螺旋碳纤维分子结构中既含有不饱和的C=C双键,又含有饱和的-CH2-和-CH3基团。  相似文献   

15.
硼在碳/碳复合材料中的状态及其催化石墨化作用   总被引:6,自引:0,他引:6  
以糖酮树脂作粘结剂,添加树脂碳微粉、硼类催化剂、短切PAN基高强碳纤维,制得了含硼C/C复合材料。通过X射线衍射(XRD)、X射线光电子(XPS)等手段,检测了硼、氧化硼在C/C中的状态,研究了它们对C/C复合材料的催化石墨化作用,分析了石墨化温度、催化剂种类及其用量对石墨化度的影响。结果表明:硼以固溶体的形式存在C/C复合材料,通过吸电子断键、代替碳原子消除缺陷等机理形式,使最难石墨化的玻璃碳和  相似文献   

16.
在氮气气氛及2700℃温度下,对富含结构缺陷的具有Turbostratic形貌特征的碳纳米管原料进行高温石墨化处理,利用高分辨透射电子显微镜以及自主开发的基于透射电镜的原位性能表征系统对石墨化前后的碳管结构和导电性能进行了研究. 实验结果表明:经过高温石墨化处理后,碳管结构转变为类似于竹节状或管状的锥面结构,锥角为10°~30°,管径为10~40nm. 从锥角数据推算出锥面形成时的旋转位移角中均包含了一个附加的重叠角,说明石墨化后的碳管主要以螺旋的锥面结构为主,且弯曲的螺旋锥面靠∑7、∑13和∑19等重位点阵来稳定. 导电性能测量的结果表明具有螺旋锥面结构的纳米碳管呈半导体特性.  相似文献   

17.
Currently, carbon fibers (CFs) from the solution spinning, air oxidation, and carbonization of polyacrylonitrile impose a lower price limit of ≈$10 per lb, limiting the growth in industrial and automotive markets. Polyethylene is a promising precursor to enable a high‐volume industrial grade CF as it is low cost, melt spinnable and has high carbon content. However, sulfonated polyethylene (SPE)‐derived CFs have thus far fallen short of the 200 GPa tensile modulus threshold for industrial applicability. Here, a graphitization process is presented catalyzed by the addition of boron that produces carbon fiber with >400 GPa tensile modulus at 2400 °C. Wide angle X‐ray diffraction collected during carbonization reveals that the presence of boron reduces the onset of graphitization by nearly 400 °C, beginning around 1200 °C. The B‐doped SPE‐CFs herein attain 200 GPa tensile modulus and 2.4 GPa tensile strength at the practical carbonization temperature of 1800 °C.  相似文献   

18.
以不同石墨化度的中间相沥青基碳纤维为基底磁控溅射构筑Cf/Al界面,研究了不同石墨化度Cf/Al界面微观结构的演变,并与聚丙烯腈碳纤维比较揭示了Cf/Al界面的损伤机制。结果表明:随着石墨化处理温度的提高中间相沥青基碳纤维的石墨微晶尺寸增大、取向度和石墨化度提高,Cf/Al界面的反应程度降低和碳纤维损伤减少。不同石墨化度Cf/Al界面的损伤决定于初始缺陷的数量和后续裂纹在碳纤维内部的增殖和扩展。在2400℃和2700℃石墨化处理使裂纹更容易在中间相沥青基碳纤维石墨微晶片层间扩展,去除镀层后纤维损伤比聚丙烯腈碳纤维分别高5.19%和3.70%;在3000℃石墨化处理后,化学惰性较大的中间相沥青碳纤维使界面反应产生的缺陷数量大幅度减小,去除镀层后纤维的损伤比聚丙烯腈碳纤维低1.85%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号