首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural rubber is a valuable source of income in many tropical countries and rubber trees are increasingly planted in tropical areas, where they contribute to land-use changes that impact the global carbon cycle. However, little is known about the carbon balance of these plantations. We studied the soil carbon balance of a 15-year-old rubber plantation in Thailand and we specifically explored the seasonal dynamic of soil CO2 efflux (F S) in relation to seasonal changes in soil water content (W S) and soil temperature (T S), assessed the partitioning of F S between autotrophic (R A) and heterotrophic (R H) sources in a root trenching experiment and estimated the contribution of aboveground and belowground carbon inputs to the soil carbon budget. A multiplicative model combining both T S and W S explained 58 % of the seasonal variation of F S. Annual soil CO2 efflux averaged 1.88 kg C m?2 year?1 between May 2009 and April 2011 and R A and R H accounted for respectively 63 and 37 % of F S, after corrections of F S measured on trenched plots for root decomposition and for difference in soil water content. The 4-year average annual aboveground litterfall was 0.53 kg C m?2 year?1 while a conservative estimate of belowground carbon input into the soil was much lower (0.17 kg C m?2 year?1). Our results highlighted that belowground processes (root and rhizomicrobial respiration and the heterotrophic respiration related to belowground carbon input into the soil) have a larger contribution to soil CO2 efflux (72 %) than aboveground litter decomposition.  相似文献   

2.
Photosynthesis controls of CO2 efflux from maize rhizosphere   总被引:4,自引:0,他引:4  
The effects of different shading periods of maize plants on rhizosphere respiration and soil organic matter decomposition were investigated by using a 13C natural abundance and 14C pulse labeling simultaneously. 13C was a tracer for total C assimilated by maize during the whole growth period, and 14C was a tracer for recently assimilated C. CO2 efflux from bare soil was 4 times less than the total CO2 efflux from planted soil under normal lighting. Comparing to the normal lighting control (12/12 h day/night), eight days with reduced photosynthesis (12/36 h day/night period) and strongly reduced photosynthesis (12/84 h day/night period) resulted in 39% and 68% decrease of the total CO2 efflux from soil, respectively. The analysis of 13C natural abundance showed that root-derived CO2 efflux accounted for 82%, 68% and 56% of total CO2 efflux from the planted soil with normal, prolonged and strongly prolonged night periods, respectively. Clear diurnal dynamics of the total CO2 efflux from soil with normal day-night period as well as its strong reduction by prolonged night period indicated tight coupling with plant photosynthetic activity. The light-on events after prolonged dark periods led to increases of root-derived and therefore of total CO2 efflux from soil. Any factor affecting photosynthesis, or substrate supply to roots and rhizosphere microorganisms, is an important determinant of root-derived CO2 efflux, and thereby, total CO2 efflux from soils. 14C labeling of plants before the first light treatment did not show any significant differences in the 14CO2 respired in the rhizosphere between different dark periods because the assimilate level in the plants was high. Second labeling, conducted after prolonged night phases, showed higher contribution of recently assimilated C (14C) to the root-derived CO2 efflux by shaded plants. Results from 13C natural abundance showed that the cultivation of maize on Chromic Luvisol decreased soil organic matter (SOM) mineralization compared to unplanted soil (negative priming effect). A more important finding is the observed tight coupling of the negative rhizosphere effect on SOM decomposition with photosynthesis.  相似文献   

3.
土壤微生物作为生态系统中重要的分解者,在对动植物残体以及土壤有机质降解的过程中,一方面释放CO2到大气中,是土壤碳排放的重要组成部分;另一方面,在分解的过程中,形成了可供给植物利用的无机养分.由于温度对代谢活动的直接影响,过去对微生物代谢的研究主要集中在生长季,通常假设冬季土壤微生物的活力可以忽略.陆地表面近60%的区域经历着季节性积雪覆盖和季节性土壤冻结的影响.近年来的研究表明,由于积雪的覆盖,形成很好的绝缘层,雪被下土壤中微生物仍然具有显著的活性,对土壤碳排放和植物的养分吸收具有重要的贡献.本文就积雪和冻结土壤系统中的微生物碳排放和碳氮循环的季节性特征进行了全面的分析,综述了国内外冬季雪下碳氮循环的研究现状,提出了目前研究中存在的问题和未来的研究方向,强调了开展温带冬季雪下土壤微生物碳氮循环研究的必要性和重要性.  相似文献   

4.
Biogeochemistry - The storage and cycling of soil organic carbon (SOC) are governed by multiple co-varying factors, including climate, plant productivity, edaphic properties, and disturbance...  相似文献   

5.
Although numerous studies indicate that increasing atmospheric CO2 or temperature stimulate soil CO2 efflux, few data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the 13C and 18O isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 °C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.  相似文献   

6.
Soil CO2 efflux (Fsoil) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long‐term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free‐Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment‐induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values – estimated based on temperature alone assuming nonlimiting soil water content – by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil, showing a decrease of ca. 114 g C m?2 yr?1 per 1 g m?2 increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production.  相似文献   

7.
Current predictions of climate change include altered rainfall patterns throughout Europe, continental USA and areas such as the Amazon. The effect of this on soil carbon efflux remains unclear although several modelling studies have highlighted the potential importance of drought for carbon storage. To test the importance of drought, and more importantly repeated drought year-on-year, we used automated retractable curtains to exclude rain and produce repeated summer drought in three heathlands at varying moisture conditions. This included a hydric system limited by water-excess (in the UK) and two mesic systems with seasonal water limitation in Denmark (DK) and the Netherlands (NL). The experimental rainfall reductions were set to reflect single year droughts observed in the last decade with exclusion of rain for 2–3 months of the year resulting in a 20–26% reduction in annual rainfall and 23–38% reduction in mean soil moisture during the drought period. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods) was also observed at all three sites, along with a reduction in the maximum water-holding capacity attained. Three hypotheses are discussed which may have contributed to this lack of recovery in soil moisture: hydrophobicity of soil organic matter, increased water use by plants and increased cracking of the soil. The responses of soil respiration to this change in soil moisture varied among the sites: decreased rates were observed at the water-limited NL and DK sites whilst they increased at the UK site. Reduced sensitivity of soil respiration to soil temperature was observed at soil moisture contents above 55% at the UK site and below 20% and 13% at the NL and DK sites, respectively. Soil respiration rates recovered to predrought levels in the NL and DK sites during the winter re-wetting period that indicates any change in soil C storage due to changes in soil C efflux may be short lived in these mesic systems. In contrast, in the hydric UK site after 2 years of drought treatment, the persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels. These findings suggest that carbon-rich soils with high organic matter content may act as a significant source of CO2 to the atmosphere following repeated summer drought. Nonrecovery of soil moisture and a persistent increase in soil respiration may be the primary mechanism underlying the reported substantial losses of soil carbon from UK organic soils over the last 20 years. These findings indicate that the water status of an ecosystem will be a critical factor to consider in determining the impact of drought on the soil carbon fluxes and storage.  相似文献   

8.
土壤温度和水分对油松林土壤呼吸的影响   总被引:12,自引:0,他引:12  
用LI-COR 6400-09土壤呼吸测定系统,在太原天龙山自然保护区对油松林的土壤呼吸进行了4a测定.结果表明,土壤呼吸具有明显的季节变化特点,最大值出现在8月份,在6~10 μmol m~(-2) s~(-1) 之间,最小值出现在12月份和3月份,在0.5 μmol m~(-2) s~(-1)左右.2005、2006、2007和2008年土壤呼吸CO_2的年平均值分别为(4.71±3.74)、(3.08±2.91)、(2.96±2.58) μmol m~(-2) s~(-1)和(2.12±1.54) μmol m~(-2) s~(-1);4a的CO_2总平均值为(3.27±2.95) μmol m~(-2) s~(-1).4个测定年土壤呼吸的平均值总体差异显著.4个测定年土壤CO_2释放C量分别为1103.5、882.8、918.4 g m~(-2)和666.3 g m~(-2),总C平均值为892.8 g m~(-2),具有明显的年际差异.指数方程可以很好的表达土壤呼吸与10 cm深度土壤温度的关系,R~2值4a分别为0.39,0.60,0.68和0.71,Q_(10)值分别为3.10,4.41、4.05和5.18,用4a全部数据计算的Q_(10)值为4.31.土壤水分对土壤呼吸的作用较弱,R~2值4a分别仅为0.31、0.25、0.13和0.02,但是夏季土壤干旱对土壤呼吸的抑制作用非常明显,可使土壤呼吸下降50%以上.夏季土壤干旱是导致土壤呼吸年际变化的主要原因.4个包括土壤温度和水分的双变量模型均可以很好地模拟土壤呼吸的季节变化, 拟合方程的R~2值从0.58到0.79.  相似文献   

9.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.  相似文献   

10.
Soil amendment with pyrogenic organic matter (PyOM), also named biochar, is claimed to sequester carbon (C). However, possible interactions between PyOM and native soil organic carbon (SOC) may accelerate the loss of SOC, thus reducing PyOM's C sequestration potential. We combined the results of 46 studies in a meta‐analysis to investigate changes in CO2 emission of PyOM‐amended soils and to identify the causes of these changes and the possible factors involved. Our results showed a statistically significant increase of 28% in CO2 emission from PyOM‐amended soils. When grouped by PyOM C (PyC):SOC ratios, the group of studies with a ratio >2 showed a significant increase in CO2 emissions, but those with a ratio <2 showed no significant effect of PyOM application on CO2 emission. Our data are consistent with the hypothesis that increased CO2 emission after PyOM addition is additive and mainly derived from PyOM's labile C fractions. The PyC:SOC ratio provided the best predictor of increases in CO2 production after PyOM addition to soil. This meta‐analysis highlights the importance of taking into account the amount of applied PyC in relation to SOC for designing future decomposition experiments.  相似文献   

11.
Aims This study was conducted to (i) determine if soil CO2 efflux is more sensitive to temperature changes in alpine areas than in lowland grasslands, (ii) examine the effects of temperature and moisture on soil respiration, and (iii) evaluate the potential for change in soil carbon storage in response to global warming in different grasslands in East Asia.Methods We collected soil samples from two different temperate grasslands, an alpine meadow on the Qinghai-Tibetan plateau, China, and a lowland grassland in Tsukuba, Japan. The CO2 emission rate was then measured for these soil samples after they were incubated at 25°C and 60% of the water holding capacity for 7 days.Important findings (i)?The soil respiration rate was more sensitive to temperature change in the alpine soil than in the lowland soil. The average Q 10 was 7.6 for the alpine meadow soil but only 5.9 for the lowland soil. The increased sensitivity appears to be due, at least in part, to the soil organic carbon content and/or soil carbon to nitrogen ratio, especially in the surface layer. (ii) The relationship between the CO2 emission rate and the soil moisture content revealed that the alpine meadow had a more clear response than the lowland soil. (iii) This study suggests that changes in soil moisture and soil temperature may have larger impacts on soil CO2 efflux in the alpine meadow than in the lowland grassland evaluated here.  相似文献   

12.
Alder is a typical species used for forest rehabilitation after disturbances because of its N2-fixing activities through microbes. To investigate forest dynamics of the carbon budget, we determined the aboveground and soil carbon content, carbon input by litterfall to belowground, and soil CO2 efflux over 2 years in 38-year-old alder plantations in central Korea. The estimated aboveground carbon storage and increment were 47.39 Mg C ha−1 and 2.17 Mg C ha−1 year−1. Carbon storage in the organic layer and in mineral soil in the topsoil to 30 cm depth were, respectively, 3.21 and 66.85 Mg C ha−1. Annual carbon input by leaves and total litter in the study stand were, respectively, 1.78 and 2.68 Mg C ha−1 year−1. The aboveground carbon increment at this stand was similar to the annual carbon inputs by total litterfall. The diurnal pattern of soil CO2 efflux was significantly different in May, August, and October, typically varying approximately twofold throughout the course of a day. In the seasonally observed pattern, soil CO2 efflux varied strongly with soil temperature; increasing trends were evident during the early growing season, with sustained high rates from mid May through late October. Soil CO2 efflux was related exponentially to soil temperature (R 2 = 0.85, < 0.0001), but not to soil water content. The Q 10 value for this plantation was 3.8, and annual soil respiration was estimated at 10.2 Mg C ha−1 year−1. An erratum to this article can be found at  相似文献   

13.
The Arctic treeline is advancing in many areas and changes in carbon (C) cycling are anticipated. Differences in CO2 exchange between adjacent forest and tundra are not well known and contrasting conclusions have been drawn about the effects of forest advance on ecosystem C stocks. Measurements of CO2 exchange in tundra and adjacent forest showed the forest was a greater C sink during the growing season in northern Canada. There is, however, reason to expect that forests lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of belowground respiration and CO2 efflux. In this study, I tested the hypotheses that forests maintain a deeper snowpack, have warmer soils and lose more C during winter than adjacent tundra near the Arctic treeline in northwest Alaska. Measurements of snow depth, soil temperature and CO2 efflux were made at five forest and two treeline sites in late winter of three consecutive years. Snow depth and soil temperature were greater in forest than treeline sites, particularly in years with higher snowfall. There was a close exponential correlation between soil temperature and CO2 efflux across sites and years. The temperature-efflux model was driven using hourly soil temperatures from all the sites to provide a first approximation of the difference in winter C loss between treeline and forest sites. Results showed that greater wintertime C loss from forests could offset greater summertime C gain.  相似文献   

14.
15.
《Global Change Biology》2017,23(9):3501-3512
We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five‐day intervals of exposure to elevated CO2 (eCO2) ranging 1.0–1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long‐term eCO2 treatment, longer than the 10 days observed for decrease of FCO2 after experimental blocking of C flow to belowground, but shorter than the ~13 months it took for increase of FCO2 following the initiation of eCO2. The reduction of FCO2 upon termination of enrichment (~35%) cannot be explained by the reduction of leaf area (~15%) and associated carbohydrate production and allocation, suggesting a disproportionate contraction of the belowground ecosystem components; this was consistent with the reductions in base respiration and FCO2‐temperature sensitivity. These asymmetric responses pose a tractable challenge to process‐based models attempting to isolate the effect of individual processes on FCO2.  相似文献   

16.
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m?2 year?1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m?2 year?1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed.  相似文献   

17.
Increase of belowground C allocation by plants under global warming or elevated CO2 may promote decomposition of soil organic carbon (SOC) by priming and strongly affects SOC dynamics. The specific effects by priming of SOC depend on the amount and frequency of C inputs. Most previous priming studies have investigated single C additions, but they are not very representative for litterfall and root exudation in many terrestrial ecosystems. We evaluated effects of 13C‐labeled glucose added to soil in three temporal patterns: single, repeated, and continuous on dynamics of CO2 and priming of SOC decomposition over 6 months. Total and 13C labeled CO2 were monitored to analyze priming dynamics and net C balance between SOC loss caused by priming and the retention of added glucose‐C. Cumulative priming ranged from 1.3 to 5.5 mg C g?1 SOC in the subtropical, and from ?0.6 to 5.5 mg C g?1 SOC in the tropical soils. Single addition induced more priming than repeated and continuous inputs. Therefore, single additions of high substrate amounts may overestimate priming effects over the short term. The amount of added glucose C remaining in soil after 6 months (subtropical: 8.1–11.2 mg C g?1 SOC or 41‐56% of added glucose; tropical: 8.7–15.0 mg C g?1 SOC or 43–75% of glucose) was substantially higher than the net C loss due to SOC decomposition including priming effect. This overcompensation of C losses was highest with continuous inputs and lowest with single inputs. Therefore, raised labile organic C input to soils by higher plant productivity will increase SOC content even though priming accelerates decomposition of native SOC. Consequently, higher continuous input of C belowground by plants under warming or elevated CO2 can increase C stocks in soil despite accelerated C cycling by priming in soils.  相似文献   

18.
Ecosystem studies often study soil CO2 flux as a function of environmental factors, such as temperature, that affect respiration rates by changing the rate of utilization of carbon substrates. These studies tend not to include factors, such as photosynthesis, that affect the supply of carbon substrates to roots and root-associated processes. We examined the role of decreased carbohydrate source on soil CO2 flux and root respiration in an annually-burned grassland through manipulations of light intensity and removal of above ground biomass. We also quantified the contribution of root respiration to soil CO2 flux by measuring the respiration rates of excised roots. Two days of shading caused a 40% reduction in soil CO2 flux, while clipping was associated with a 19% reduction in soil CO2 flux. Both reductions were independent of soil and air temperature at the time of measurement. The relative decrease in soil CO2 flux observed in the clipping experiment was similar in magnitude to an observed decrease in root respiration per gram of root, linking decreased root activity and soil CO2 flux. From these experiments, we conclude that variation in factors that affect carbon availability to roots can be important determinants of soil CO2 flux and should be included explicitly in studies that measure or model soil CO2 flux. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
? An unbiased partitioning of autotrophic and heterotrophic components of soil CO(2) efflux is important to estimate forest carbon budgets and soil carbon sequestration. The contribution of autotrophic sources to soil CO(2) efflux (F(A)) may be underestimated during the daytime as a result of internal transport of CO(2) produced by root respiration through the transpiration stream. ? Here, we tested the hypothesis that carbon isotope composition of soil CO(2) efflux (δ(FS)) in a Eucalyptus plantation grown on a C(4) soil is enriched during the daytime, which will indicate a decrease in F(A) during the periods of high transpiration. ? Mean δ(FS) of soil CO(2) efflux decreased to -25.7‰ during the night and increased to -24.7‰ between 11:00 and 15:00 h when the xylem sap flux density was at its maximum. ? Our results indicate a decrease in the contribution of root respiration to soil CO(2) efflux during the day that may be interpreted as a departure of root-produced CO(2) in the transpiration stream, leading to a 17% underestimation of autotrophic contribution to soil CO(2) efflux on a daily timescale.  相似文献   

20.
生物群区和林龄对森林土壤呼吸及其组分的影响   总被引:2,自引:1,他引:1  
黄志霖  肖文发 《生态学报》2008,28(9):4078-4087
森林土壤呼吸(RS)一般分为自养呼吸(RA)和异养呼吸(RH)两个组分,各组分对环境变化具有不同的响应,对土壤和生态系统的碳平衡产生重要影响.对全球不同生物群区、林龄的森林RS及其组分RH的研究文献进行检索与分析,结果表明:林地RS沿北方森林-温带针叶林-温带落叶林-热带林次序逐步升高,非相邻区系之间差异显著(α<0.05).土壤异养呼吸组分(RH)及其贡献率(RH/RS),仅北方森林与热带林之间有显著性差异,其余区系之间无显著性差异(α>0.05).异养呼吸组分贡献率(RH/RS),随着RS的不断增加,呈现出RH/RS率降低的总体趋势.对于林地RS,幼龄林显著高于中龄林和成熟林.RH/RS率随树龄增加而略微升高,但龄组之间没有显著性差异(α>0.05).各生物群区及林龄的RH与RS之间显著性相关分析,为全球森林碳收支的估测提供有效的方法和数据基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号