首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autonomous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, our contributions are that (1) we proposed a model that incorporates individual heterogeneous preferences; (2) we compared traditional taxis to autonomous taxis; and (3) we examined the spatial change of service coverage due to ride sharing. Our results show that switching from traditional taxis to shared autonomous taxis can potentially reduce the fleet size by 59% while maintaining the service level and without significant increase in wait time for the riders. The benefit of ride sharing is significant with increased occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and reduced carbon emissions (up to 866 metric tonnes per day). Dynamic ride sharing, wich allows shared trips to be formed among many groups of riders, up to the taxi capacity, increases system flexibility. Constraining the sharing to be only between two groups limits the sharing participation to be at the 50–75% level. However, the reduced fleet from ride sharing and autonomous driving may cause taxis to focus on areas of higher demands and lower the service levels in the suburban regions of the city.  相似文献   

2.
Intra‐city commuting is being revolutionized by call‐taxi services in many developing countries such as India. A customer requests a taxi via phone, and it arrives at the right time and at the right location for the pick‐up. This mode of intra‐city travel has become one of the most reliable and convenient modes of transportation for customers traveling for business and non‐business purposes. The increased number of vehicles on city roads and raising fuel costs has prompted a new type of transportation logistics problem of finding a fuel‐efficient and quickest path for a call‐taxi through a city road network, where the travel times are stochastic. The stochastic travel time of the road network is induced by obstacles such as the traffic signals and intersections. The delay and additional fuel consumption at each of these obstacles are calculated that are later imputed to the total travel time and fuel consumption of a path. A Monte‐Carlo simulation‐based approach is proposed to identify unique fuel‐efficient paths between two locations in a city road network where each obstacle has a delay distribution. A multi‐criteria score is then assigned to each unique path based on the probability that the path is fuel efficient, the average travel time of the path and the coefficient of variation of the travel times of the path. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper develops a mathematical model that is based on the absorbing Markov chain approach to describe taxi movements, taking into account the stochastic searching processes of taxis in a network. The local searching behavior of taxis is specified by a logit form, and the O‐D demand of passengers is estimated as a logit model with a choice of taxi meeting point. The relationship between customer and taxi waiting times is modeled by a double‐ended queuing system. The problem is solved with a set of non‐linear equations, and some interesting results are presented. The research provides a novel and potentially useful formulation for describing the urban taxi services in a network.  相似文献   

4.
This paper introduces the taxi route network design problem (TXRNDP) for a fixed‐route taxi service operating in Iran and, in similar form, in various other developing countries. The service operates fairly similar to regular transit services in that vehicles are only permitted to follow a certain predetermined route on the network. The service is provided with small size vehicles and main features are that vehicles only depart if full and that there are no intermediate boarding stops. In Iran the service attracts a high modal share but requires better coordination which is the main motivation for the present study. We develop a mathematical programming model to minimize the total travel time experienced by passengers while constraining the number of taxi lines, the trip transfer ratio and the length of taxi lines. A number of assumptions are introduced in order to allow finding an exact rather than heuristic solution. We further develop a linear programming solution to minimize the number of taxis required to serve the previously found fixed‐route taxi network. Results of a case study with the city of Zanjan, Iran, illustrate the resulting taxi flows and suggest the capability of the proposed model to reduce the total travel time, the total waiting time and the number of taxi lines compared to the current taxi operation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This study models and examines the taxi customers' preferences for hailing vacant taxis on streets. A stated preference survey was conducted to randomly select and interview 1242 taxi customers at taxi stands and pedestrians on streets, who had experiences of taking taxis recently, about their choices under different given hypothetical scenarios. In total, 4968 observations were collected and used for developing the discrete choice models for the analysis. To account for the potential correlations among alternatives, two nested logit models are developed, calibrated, and compared with a standard multinomial logit model in the investigation. The results of likelihood ratio test demonstrate that one of the developed nested logit models is better than the standard multinomial logit model to describe the search behavior of taxi customers. The model results also show that the walking time to and the waiting time at the location for hailing taxis, the extra travel time to the destination because of local circulation for finding a way from the pickup location heading to a passenger's destination, as well as the taxi customers' perceptions for walking to and waiting at taxi stands were found as significant factors to influence their decisions. In addition, the results of market segmentation analysis illustrate the variations in taxi‐search strategies of taxi customers in different districts and regions. Some policy implications on introducing more taxi stands and improving the utilization rates of taxi stands are also discussed. We believe that the proposed models, findings, and discussion are useful for developing micro‐simulation models to evaluate the performance of road traffic networks with taxi services and developing simulation‐based optimization models to answer policy questions related to taxi services. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Taxis are increasingly becoming a prominent mobility mode in many major cities due to their accessibility and convenience. The growing number of taxi trips and the increasing contribution of taxis to traffic congestion are cause for concern when vacant taxis are not distributed optimally within the city and are unable to find unserved passengers effectively. A way of improving taxi operations is to deploy a taxi dispatch system that matches the vacant taxis and waiting passengers while considering the search friction dynamics. This paper presents a network-scale taxi dispatch model that takes into account the interrelated impact of normal traffic flows and taxi dynamics while optimizing for an effective dispatching system. The proposed model builds on the concept of the macroscopic fundamental diagram (MFD) to represent the dynamic evolution of traffic conditions. The model considers multiple taxi service firms operating in a heterogeneously congested city, where the city is assumed to be partitioned into multiple regions each represented with a well-defined MFD. A model predictive control approach is devised to control the taxi dispatch system. The results show that lack of the taxi dispatching system leads to severe accumulation of unserved taxi passengers and vacant taxis in different regions whereas the dispatch system improves the taxi service performance and reduces traffic congestion by regulating the network towards the undersaturated condition. The proposed framework demonstrates sound potential management schemes for emerging mobility solutions such as fleet of automated vehicles and demand-responsive transit services.  相似文献   

7.
Taxis make an important contribution to transport in many parts of the world, offering demand‐responsive, door‐to‐door transport. In larger cities, taxis may be hailed on‐street or taken from taxi ranks. Elsewhere, taxis are usually ordered by phone. The objective of a taxi dispatcher is to maximize the efficiency of fleet utilization. While the spatial and temporal distribution of taxi requests has in general a high degree of predictability, real time traffic congestion information can be collected and disseminated to taxis by communication technologies. The efficiency of taxi dispatching may be significantly improved through the anticipation of future requests and traffic conditions. A rolling horizon approach to the optimisation of taxi dispatching is formulated, which takes the stochastic and dynamic nature of the problem into account. Numerical experiments are presented to illustrate the performances of the heuristics, taking the time dependency of travel times and passenger arrivals into account.  相似文献   

8.
Yang  Hai  Lau  Yan Wing  Wong  Sze Chun  Lo  Hong Kam 《Transportation》2000,27(3):317-340
In most urban areas taxi services are subject to various types of regulation such as entry restriction and price control. However, effective intervention depends on generating and using suitable information on the demand-supply equilibrium of the taxi market. This paper develops a simultaneous equation system of passenger demand, taxi utilization and level of services based on a taxi service situation found in the urban area of Hong Kong over the last ten years. A set of variables is introduced including number of licensed taxis, taxi fare, disposable income, occupied taxi journey time as exogenous variables and daily taxi passenger demand, passenger waiting time, taxi availability, taxi utilization and average taxi waiting time as endogenous variables. These variables are coupled together through a system of nonlinear simultaneous equations whose parameters are estimated from survey data. The simultaneous equation system can be used to obtain useful regulatory information to assist with the decisions concerning the restriction over the number of taxi licenses and the fixing of the taxi fare structure as well as a range of service quality control. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   

10.
Recent empirical studies have revealed that travel time variability plays an important role in travelers' route choice decisions. To simultaneously account for both reliability and unreliability aspects of travel time variability, the concept of mean‐excess travel time (METT) was recently proposed as a new risk‐averse route choice criterion. In this paper, we extend the mean‐excess traffic equilibrium model to include heterogeneous risk‐aversion attitudes and elastic demand. Specifically, this model explicitly considers (1) multiple user classes with different risk‐aversions toward travel time variability when making route choice decisions under uncertainty and (2) the elasticity of travel demand as a function of METT when making travel choice decisions under uncertainty. This model is thus capable of modeling travelers' heterogeneous risk‐averse behaviors with both travel choice and route choice considerations. The proposed model is formulated as a variational inequality problem and solved via a route‐based algorithm using the modified alternating direction method. Numerical analyses are also provided to illustrate the features of the proposed model and the applicability of the solution algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a two-stage modeling approach is proposed to predict vacant taxi movements in searching for customers. The taxi movement problem is formulated into a two-stage model that consists of two sub-models, namely the first and second stage sub-models. The first stage sub-model estimates the zone choice of vacant taxi drivers for customer-search and the second stage sub-model determines the circulation time and distance of vacant taxi drivers in each zone by capturing their local customer-search decisions in a cell-based network within the zone chosen in the first stage sub-model. These two sub-models are designed to influence each other, and hence an iterative solution procedure is introduced to solve for a convergent solution. The modeling concept, advantages, and applications are illustrated by the global positioning system data of 460 Hong Kong urban taxis. The results demonstrate that the proposed model formulation offers a great improvement in terms of root mean square error as compared with the existing taxi customer-search models, and show the model capabilities of predicting the changes in vacant taxi trip distributions with respect to the variations in the fleet size and fare. Potential taxi policies are investigated and discussed according to the findings to provide insights in managing the Hong Kong taxi market.  相似文献   

12.
The problem of designing a layout of bike stations for public bike‐sharing systems entails selecting a number of stations and then constructing them within a planning area having many bike traffic zones and candidate bike stations. In this paper, we proposed a mathematical model to formulate the layout of public bike stations with the objective of minimizing users' total travel time and investment budget constraints. The model can guarantee that the needs for picking up and dropping off bikes amidst all bike travel demands are satisfied. Using this model, the number and locations of bike stations and the number of bikes and parking lockers at each bike station can be simultaneously determined. A typical example solved by lingo solver is created to illustrate the proposed model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This study aims at investigating the impact and feasibility of charging taxis with toll fee in the pricing zone when designing congestion pricing scheme. A bi‐level programming model is developed to compare the maximum social welfares before and after the congestion charge is imposed on taxis. The lower level is a combined network equilibrium model formulated as a variational inequality program, which considers the logit‐based mode split, route choice, elastic demand, and vacant taxi distributions. The upper level is to maximize the social welfare when toll rates vary. The bi‐level problem can be solved by the genetic algorithm, whereas the lower level is solved by the block Gauss–Seidel decomposition approach together with the method of successive averages and diagonalization algorithm. An application with numerical examples is conducted to demonstrate the effectiveness of the proposed model and algorithm and to reveal some interesting findings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In densely populated and congested urban areas, the travel times in congested multi‐modal transport networks are generally varied and stochastic in practice. These stochastic travel times may be raised from day‐to‐day demand fluctuations and would affect travelers' route and mode choice behaviors according to their different expectations of on‐time arrival. In view of these, this paper presents a reliability‐based user equilibrium traffic assignment model for congested multi‐modal transport networks under demand uncertainty. The stochastic bus frequency due to the unstable travel time of bus route is explicitly considered. By the proposed model, travelers' route and mode choice behaviors are intensively explored. In addition, a stochastic state‐augmented multi‐modal transport network is adopted in this paper to effectively model probable transfers and non‐linear fare structures. A numerical example is given to illustrate the merits of the proposed model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In Niamey, private motor vehicles carry 80% of those who use public transport. These vehicles are urban shared taxis called ‘redheads’ and run through the streets of the city in all directions. Their vital importance for the mobility of city‐dwellers justifies their strict supervision and the setting of fares by public authorities.

At present, the ‘redheads’ are in crisis. Taxi owners are no longer able to make a profit on their capital and are ceasing to invest. Urban buses are unable to replace taxis, for they operate at a large deficit. The government of Niger hopes to restore the level of transport service by means of new regulations for the taxi business in the city.

But this business is in the hands of both taxi owners and drivers, who, while partners in the operation, dispute over their share of the revenues. The aim of this article is to provide an economic and political analysis of this particular form of production of urban transport, in which employers who cannot control their companies, employees who reserve the profits of the business for themselves, and public authorities who are compelled to intervene, are coming face to face.  相似文献   

16.
This paper proposes a cell-based model to predict local customer-search movements of vacant taxi drivers, which incorporates the modeling principles of the logit-based search model and the intervening opportunity model. The local customer-search movements were extracted from the global positioning system data of 460 Hong Kong urban taxis and inputted into a cell-based taxi operating network to calibrate the model and validate the modeling concepts. The model results reveal that the taxi drivers’ local search decisions are significantly affected by the (cumulative) probability of successfully picking up a customer along the search route, and that the drivers do not search their customers under the random walk principle. The proposed model helps predict the effects of the implementation of the policies in adjusting the taxi fleet size and the changes in passenger demand on the customer-search distance and time of taxi drivers.  相似文献   

17.
This paper investigates the factors that influence the choice of, and hence demand for taxis services, a relatively neglected mode in the urban travel task. Given the importance of positioning preferences for taxi services within the broader set of modal options, we develop a modal choice model for all available modes of transport for trips undertaken by individuals or groups of individuals in a number of market segments. A sample of recent trips in Melbourne in 2012 was used to develop segment-specific mode choice models to obtain direct (and cross) elasticities of interest for cost and service level attributes. Given the nonlinear functional form of the way attributes of interest are included in the modal choice models, a simple set of mean elasticity estimates are not behaviourally meaningful; hence a decision support system is developed to enable the calculation of mean elasticity estimates under specific future service and pricing levels. Some specific direct elasticity estimates are provided as the basis of illustrating the magnitudes of elasticity estimates under likely policy settings.  相似文献   

18.
To mitigate airport congestion caused by increasing air traffic demand, the trajectory‐based surface operations concept has been proposed to improve surface movement efficiency while maintaining safety. It utilizes decision support tools to provide optimized time‐based trajectories for each aircraft and uses automation systems to guide surface movements and monitor their conformance with assigned trajectories. Whether the time‐based trajectories can be effectively followed so that the expected benefits can be guaranteed depends firstly on whether these trajectories are realistic. So, this paper first deals with the modeling biases of the network model typically used for taxi trajectory planning via refined taxiway modeling. Then it presents a zone control‐based dynamic routing and timing algorithm upon the refined taxiway model to find the shortest time taxi route and timings for an aircraft. Finally, the presented algorithm is integrated with a sequential planning framework to continuously decide taxi routes and timings. Experimental results demonstrate that the solution time for an aircraft can be steadily around a few milliseconds with timely cleaning of expired time windows, showing potential for real‐time decision support applications. The results also show the advantages of the proposed methodology over existing approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper examines all the disparate technologies and techniques capable of smoothing the integration of public transport modes and services at both the urban and interurban scale. The paper focuses on the application of information technology and telematics solutions which have been designed to create as seamless a journey as possible from the point of view of the transport system user. The scope of the paper is therefore deliberately wide‐ranging and includes an examination of measures as apparently unconnected as smartcard ticketing, bus priority systems, automatic vehicle locationing, trip planning and on‐board information systems as well as new public transport services offering demand responsive travel and integration with taxi services. The paper intends to show how such technological solutions can be used to increase the attractiveness and competitiveness of fixed public transport networks in comparison to the door‐to‐door flexibility of the private car.  相似文献   

20.
This paper develops an efficient probabilistic model for estimating route travel time variability, incorporating factors of time‐of‐day, inclement weather, and traffic incidents. Estimating the route travel time distribution from historical link travel time data is challenging owing to the interactions among upstream and downstream links. Upon creating conditional probability function for each link travel time, we applied Monte Carlo simulation to estimate the total travel time from origin to destination. A numerical example of three alternative routes in the City of Buffalo shows several implications. The study found that weather conditions, except for snow, incur minor impact on off‐peak and weekend travel time, whereas peak travel times suffer great variations under different weather conditions. On top of that, inclement weather exacerbates route travel time reliability, even when mean travel time increases moderately. The computation time of the proposed model is linearly correlated to the number of links in a route. Therefore, this model can be used to obtain all the origin to destination travel time distributions in an urban region. Further, this study also validates the well‐known near‐linear relation between the standard deviation of travel time per unit distance and the corresponding mean value under different weather conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号