首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Altered pH-regulatory ion transport is characteristic of many cancers; however, the mechanisms and consequences are poorly understood. Here, we investigate how a truncated, constitutively active ErbB2 receptor (ΔNErbB2) common in breast cancer impacts on the Na+/H+-exchanger NHE1 and the Na+,HCO3-cotransporter NBCn1 in MCF-7 human breast cancer cells and address the roles of these transporters in chemotherapy resistance. Upon ΔNErbB2 expression, mRNA and protein levels of NBCn1, yet not of NHE1, increased several-fold, and the localization of both transporters was altered paralleling extensive morphological changes. The rate of pHi recovery after acid loading increased by 50% upon ΔNErbB2 expression. Knockdown and pharmacological inhibition confirmed the involvement of both NHE1 and NBCn1 in acid extrusion. NHE1 inhibition or knockdown sensitized ΔNErbB2-expressing cells to cisplatin-induced programmed cell death (PCD) in a caspase-, cathepsin-, and reactive oxygen species-dependent manner. NHE1 inhibition augmented cisplatin-induced caspase activity and lysosomal membrane permeability followed by cysteine cathepsin release. In contrast, NBCn1 inhibition attenuated cathepsin release and had no net effect on viability. These findings warrant studies of NHE1 as a potential target in breast cancer and demonstrate that in spite of their similar transport functions, NHE1 and NBCn1 serve different functions in MCF-7 cells.  相似文献   

2.
3.
4.
Mechanisms of acid release and intracellular pH (pHi) homeostasis were analysed in goldfish (Carassius auratus) gill cells in primary culture. The rate of acid secretion was measured using a cytosensor microphysiometer, and pHi was determined using the fluorescent probe 2,7-bis-(3-carboxypropyl)-5-(and-6)-carboxyfluorescein (BCPCF). Amiloride, a Na+ channel and Na+/H+ exchanger (NHE) inhibitor, had no effect on pHi, but acid secretion of the gill cells was significantly impaired. In the presence of amiloride, the intracellular acidification (achieved using the NH4Cl pulse technique) was more severe than in the absence of amiloride, and recovery from the acidosis was slowed down. Accordingly, acid secretion of gill cells was severely reduced in the absence of extracellular Na+. Under steady-state conditions, 4,4-diisothiocyanatodihydro-stilbene-2,2-disulfonic acid (DIDS), a HCO3-transport inhibitor, caused a slow acidification of pHi, and acid secretion was significantly reduced. No recovery from intracellular acidification was observed in the presence of DIDS. Bafilomycin A1, an inhibitor of V-ATPase, had no effect on steady-state pHi and recovery from an intracellular acidification, whereas the rate of acid secretion under steady-state conditions was slightly reduced. Immunohistochemistry clearly revealed the presence of the V-ATPase B-subunit in goldfish gill lamellae. Taken together, these results suggest that a Na+-dependent HCO3 transport is the dominant mechanism besides an NHE and V-ATPase to control pHi in goldfish gill cells.Communicated by G. Heldmaier  相似文献   

5.

Background

Extracellular matrix (ECM) components and intracellular pH (pHi) may serve as regulators of cell migration in various cell types.

Methods

The Oris migration assay was used to assess the effect of fibronectin (FN) on cell motility. The Na+/H+ exchanger (NHE)-1 activity was evaluated by measuring pHi and [22Na+] uptake. To examine activated signaling molecules, western blot analysis and immunoprecipitation was performed.

Results

ECM components (FN, laminin, fibrinogen, and collagen type I) increased [22Na+] uptake, pHi, and cell migration. In addition, FN-induced increase of cell migration was inhibited by NHE-1 inhibitor amiloride or NHE-1-specific siRNA. FN selectively increased the mRNA and protein expression of NHE-1, but not that of NHE-2 or NHE-3. FN binds integrin β1 and subsequently stimulates caveolin-1 phosphorylation and Ca2 + influx. Then, NHE-1 is phosphorylated by RhoA and Rho kinases, and Ca2 +/calmodulin (CaM) signaling elicits complex formation with NHE-1, which is enriched in lipid raft/caveolae microdomains of the plasma membrane. Activation of NHE-1 continuously induces an increase of [22Na+] uptake and pHi. Finally, NHE-1-dependent extracellular signal-regulated kinase (ERK) 1/2 phosphorylation enhanced matrix metalloproteinase-2 (MMP-2) and filamentous-actin (F-actin) expression, partially contributing to the regulation of embryonic stem cells (ESCs) migration.

Conclusions

FN stimulated mESCs migration and proliferation through NHE-1 activation, which were mediated by lipid raft-associated caveolin-1, RhoA/ROCK, and Ca2 +/CaM signaling pathways.

General significance

The precise role of NHE in the modulation of ECM-related physiological functions such as proliferation and migration remains poorly understood. Thus, this study analyzed the relationship between FN and NHE in regulating the migration of mouse ESCs and their related signaling pathways.  相似文献   

6.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

7.
Summary LLC-PK1 cells (a continuous epithelioid cell line with renal characteristics) are examined by microspectrofluorometry as single cells, in order to determine the mechanism of intracellular pH (pH i ) recovery from an acid load imposed by ammonium preincubation and removal (NH4 prepulse). Initial experiments evaluate the intracellular K+ levels through a null point analysis of total cellular K+ with flame photometry. The response of BCECF (a pH-sensitive fluorescent dye) is then calibrated, using saturating concentrations of nigericin to cause defined changes in pH i . For experiments with the microspectrofluorometer, LLC-PK1 cells were grown on either glass coverslips or filters (the latter attached to plastic coverslips with a hole under the filter). The cells on glass coverslips demonstrate a Na+-dependent recovery from an (NH4 prepulse) acid load which is sensitive to 1 M ethylisopropylamiloride. They also demonstrate a set point of activation of Na+/H+ exchange. When examined for changes in pH i due to changes in membrane potential, plasma membrane proton conductance could not be detected at resting pH i . Cells grown on filters also demonstrate a pH i recovery from an acid load which is Na+ dependent and ethylisopropylamiloride sensitive, but in this configuration, the majority of cells (22/23 preparations) require Na+ at the basolateral membrane for rapid pH i recovery. The morphology and polarity of the cells grown on permeable supports appears normal at the electron-microscopic level. The results are not affected by changes in cell seeding density or collagen treatment of the filters.  相似文献   

8.
Summary Intracellular pH (pH i ) of the acinar cells of the isolated, superfused mouse lacrimal gland has been measured using pH-sensitive microelectrodes. Under nonstimulated condition pH i was 7.25, which was about 0.5 unit higher than the equilibrium pH. Alterations of the external pH by ±0.4 unit shifted pH i only by ±0.08 unit. The intracellular buffering value determined by applications of 25mm NH 4 + and bicarbonate buffer solution gassed with 5% CO2/95% O2 was 26 and 46mm/pH, respectively Stimulation with 1 m acetylcholine (ACh) caused a transient, small decrease and then a sustained increase in pH i . In the presence of amiloride (0.1mm) or the absence of Na+, application of ACh caused a significant decrease in pH i and removal of amiloride or replacement with Na+-containing saline, respectively, rapidly increased the pH i . Pretreatment with DIDS (0.2mm) did not change the pH i of the nonstimulated conditions; however, it significantly enhanced the increase in pH i induced by ACh. The present results showed that (i) there is an active acid extrusion mechanism that is stimulated by ACh; (ii) stimulation with ACh enhances the rate of acid production in the acinar cells; and (iii) the acid extrusion mechanism is inhibited by amiloride addition to and Na+ removal from the bath solution. We suggest that both Na+/H+ and HCO 3 /Cl exchange transport mechanisms are taking roles in the intracellular pH regulation in the lacrimal gland acinar cells.  相似文献   

9.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

10.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

11.
We have investigated the involvement of intracellular pH (pHi) in the regulation of P-glycoprotein (P-gp) in K562/DOX cells. The selective Na+/H+ exchanger1 (NHE1) inhibitor cariporide and the “high K+” buffer were used to induce the sustained intracellular acidification of the K562/DOX cells that exhibited more alkaline pHi than the K562 cells. The acidification resulted in the decreased P-gp activity with increased Rhodamine 123 (Rh123) accumulation in K562/DOX cells, which could be blocked by the P-gp inhibitor verapamil. Moreover, the acidification decreased MDR1 mRNA and P-gp expression, and promoted the accumulation and distribution of doxorubicin into the cell nucleus. Interestingly, these processes were all pHi and time-dependent. Furthermore, the change of the P-gp expression was reversible with the pHi recovery. These data indicate that the tumor multidrug resistance (MDR) mediated by P-gp could be reversed by sustained intracellular acidification through down-regulating the P-gp expression and activity, and there is a regulative link between the pHi and P-gp in K562/DOX cells.  相似文献   

12.
Summary The present study was designed to investigate the apical and basolateral transport processes responsible for intracellular pH regulation in the thin descending limb of Henle. Rabbit thin descending limbs of long-loop nephrons were perfused in vitro and intracellular pH (pH i ) was measured using BCECF. Steady-state pH i in HEPES buffered solutions (pH 7.4) was 7.18±0.03. Following the removal of luminal Na+, pH i decreased at a rate of 1.96±0.37 pH/min. In the presence of luminal amiloride (1mm), the rate of decrease of pH i was significantly less, 0.73±0.18 pH/min. Steady-state pH i decreased 0.18 pH units following the addition of amiloride (1mm) to the lumen (Na+ 140mm lumen and bath). When Na+ was removed from the basolateral side of the tubule, pH i decreased at a rate of 0.49±0.05 pH/min. The rate of decrease of pH i was significantly less in the presence of 1mm basolateral amiloride, 0.29±0.04 pH/min. Addition of 1mm amiloride to the basolateral side (Na+ 140mm lumen and bath) caused steady-state pH i to decrease significantly by 0.06 pH units. When pH i was acutely decreased to 5.87±0.02 following NH4Cl removal (lumen, bath), pH i failed to recover in the absence of Na+ (lumen, bath). Addition of 140mm Na+ to the lumen caused pH i to recover at a rate of 2.17±0.59 pH/min. The rate of pH i recovery was inhibited 93% by 1mm luminal amiloride. When 140mm Na+ was added to the basolateral side, pH i recovered only partially at 0.38±0.07 pH/min. Addition of 1mm basolateral amiloride inhibited the recovery of pH i , by 97%. The results demonstrate that the rabbit thin descending limb of long-loop nephrons possesses apical and basolateral Na+/N+ antiporters. In the steady state, the rate of Na+-dependent H+ flux across the apical antiporter exceeds the rate of Na+-dependent H+ flux via the basolateral antiporter. Recovery of pH i following acute intracellular acidification is Na+ dependent and mediated primarily by the luminal antiporter.  相似文献   

13.
Blocking either the Na+ channel or the Na+/H+ exchanger (NHE) has been shown to reduce Na+ and Ca2+ overload during myocardial ischemia and reperfusion, respectively, and to improve post-ischemic contractile recovery. The effect of combined blockade of both Na+ influx routes on ionic homeostasis is unknown and was tested in this study. [Na+]i, pHi and energy-related phosphates were measured using simultaneous 23Na- and 31P-NMR spectroscopy in isolated rat hearts. Eniporide (3 μM) and/or lidocaine (200 μM) were administered during 5 min prior to 40 min of global ischemia and 40 min of drug free reperfusion to block the NHE and the Na+ channel, respectively. Lidocaine reduced the rise in [Na+]i during the first 10 min of ischemia, followed by a rise with a rate similar to the one found in untreated hearts. Eniporide reduced the ischemic Na+ influx during the entire ischemic period. Administration of both drugs resulted in a summation of the effects found in the lidocaine and eniporide groups. Contractile recovery and infarct size were significantly improved in hearts treated with both drugs, although not significantly different from hearts treated with either one of them.  相似文献   

14.
pH i recovery in acid-loaded Ehrlich ascites tumor cells and pH i maintenance at steady-state were studied using the fluorescent probe BCECF.Both in nominally HCO 3 -free media and at 25 mm HCO 3 , the measured pH i (7.26 and 7.82, respectively) was significantly more alkaline than the pH i . value calculated assuming the transmembrane HCO 3 gradient to be equal to the Cl gradient. Thus, pH i in these cells is not determined by the Cl gradient and by Cl/HCO 3 exchange.pH i recovery following acid loading by propionate exposure, NH 4 + withdrawal, or CO2 exposure is mediated by amiloride-sensitive Na+/H+ exchange in HCO3 free media, and in the presence of HCO 3 (25 mm) by DIDS-sensitive, Na+-dependent Cl/HCO 3 exchange. A significant residual pH i recovery in the presence of both amiloride and DIDS suggests an additional role for a primary active H+ pump in pH i regulation. pH i maintenance at steady-state involves both Na+/H+ exchange and Na+-dependent Cl/HCO 3 exchange.Acute removal of external Cl induces a DIDS-sensitive, Na+-dependent alkalinization, taken to represent HCO 3 influx in exchange for cellular Cl. Measurements of 36Cl efflux into Cl-free gluconate media with and without Na+ and/or HCO 3 (10 mm) directly demonstrate a DIDS-sensitive, Na+ dependent Cl/HCO 3 exchange operating at slightly acidic pH i (pHo 6.8), and a DIDS-sensitive, Na+-independent Cl/HCO 3 exchange operating at alkaline pH i (pH o 8.2).The excellent technical assistance of Marianne Schiødt and Birgit B. Jørgensen is gratefully acknowledged. The work was supported by the Carlsberg Foundation (B.K.) and by a grant from the Danish Natural Science Foundation (E.K.H. and L.O.S.).  相似文献   

15.
Simultaneous net uptake of Na+ and net extrusion of H+, both inhibited by amiloride, could be stimulated in red blood cells of the frog, Rana temporaria, either by intracellular acidification or cellular shrinkage. Net transports of Na+ and H+ were transient, dying out after 10–20 min (20°C) when stimulated by intracellular acidification but developing more slowly and proceeding for more than 60 min (20°C) when stimulated by cellular shrinkage. Evidence is presented suggesting a coupling between the transports of Na+ and H+ with an exchange ratio of 1:1 Na+/H+ exchange, stimulated by intracellular acidification, was able to readjust intracellular pH also when operating in parallel to a fully working anion exchanger in CO2/HCO 3 - -buffered media. Inhibition of anion exchange resulted in reduced cellular net uptake of Na+.Abbreviations DIDS 4,4-diisothiocyanatostilbene-2,2-disulphonate - DMSO dimethylsulphoxide - IU international unit - pH e extracellular pH - pH i intracellular pH - RBC red blood cell  相似文献   

16.
The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.  相似文献   

17.
Expression of transient receptor potential canonical channels (TRPC) and the effects of transforming growth factor-β1 (TGF-β1) on Ca2+ signals and fibroblast proliferation were investigated in human cardiac fibroblasts. The conventional and quantitative real-time RT-PCR, western blot, immunocytochemical analysis, and intracellular Ca2+ concentration [Ca2+]i measurement were applied. Cell proliferation and cell cycle progression were assessed using MTT assays and fluorescence activated cell sorting. Human cardiac fibroblasts have the expression of TRPC1,3,4,6 mRNA and proteins. 1-oleoyl-2-acetyl-sn-glycerol (OAG) and thapsigargin induced extracellular Ca2+-mediated [Ca2+]i rise. siRNA for knock down of TRPC6 reduced OAG-induced Ca2+ entry. Hyperforin as well as angiotensin II (Ang II) induced Ca2+ entry. KB-R7943, a reverse-mode Na+/Ca2+ exchanger (NCX) inhibitor, and/or replacement of Na+ with NMDG+ inhibited thapsigargin-, OAG- and Ang II-induced Ca2+ entry. Treatment with TGF-β1 increased thapsigargin-, OAG- and Ang II-induced Ca2+ entry with an enhancement of TRPC1,6 protein expression, suppressed by KB-R7943. TGF-β1 and AngII promoted cell cycle progression from G0/G1 to S/G2/M and cell proliferation. A decrease of the extracellular Ca2+ and KB-R7943 suppressed it. Human cardiac fibroblasts contain several TRPC-mediated Ca2+ influx pathways, which activate the reverse-mode NCX. TGF-β1 enhances the Ca2+ influx pathways requiring Ca2+ signals for its effect on fibroblast proliferation.  相似文献   

18.
Summary Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney. Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England  相似文献   

19.
Extremely alkalophilic bacteria that grow optimally at pH 10.5 and above are generally aerobic bacilli that grow at mesophilic temperatures and moderate salt levels. The adaptations to alkalophily in these organisms may be distinguished from responses to combined challenges of high pH together with other stresses such as salinity or anaerobiosis. These alkalophiles all possess a simple and physiologically crucial Na+ cycle that accomplishes the key task of pH homeostasis. An electrogenic, secondary Na+/H+ antiporter is energized by the electrochemical proton gradient formed by the proton-pumping respiratory chain. The antiporter facilitates maintenance of a pHin that is two or more pH units lower than pHout at optimal pH values for growth. It also largely converts the initial electrochemical proton gradient formed by respiration into an electrochemical sodium gradient that energizes motility as well as a plethora of Na+/solute symporters. These symporters catalyze solute accumulation and, importantly, reentry of Na+. The extreme nonmarine alkalophiles exhibit no primary sodium pumping dependent upon either respiration or ATP. ATP synthesis is not part of their Na+ cycle. Rather, the specific details of oxidative phosphorylation in these organisms are an interesting analogue of the same process in mitochondria, and may utilize some common features to optimize energy transduction.  相似文献   

20.
The effect of the putative K+/H+ ionophore, nigericin on the internal Na+ concentration ([Na i ]), the internal pH (pH i ), the internal Ca2+ concentration ([Ca i ]) and the baseline release of the neurotransmitter, GABA was investigated in Na+-binding benzofuran isophtalate acetoxymethyl ester (SBFIAM), 2′,7′-bis(carboxyethyl)-5(6) carboxyfluorescein acetoxymethyl ester (BCECF-AM), fura-2 and [3H]GABA loaded synaptosomes, respectively. In the presence of Na+ at a physiological concentration (147 mM), nigericin (0.5 μM) elevates [Na i ] from 20 to 50 mM, increases thepH i , 0.16 pH units, elevates four fold the [Ca i ] at expense of external Ca2+ and markedly increases (more than five fold) the release of [3H]GABA. In the absence of a Na+ concentration gradient (i.e. when the external Na+ concentration equals the [Na i ]), the same concentration (0.5 μM) of nigericin causes the opposite effect on thepH i (acidifies the synaptosomal interior), does not modify the [Na i ] and is practically unable to elevate the [Ca i ] or to increase [3H]GABA release. Only with higher concentrations of nigericin than 0.5 μM the ionophore is able to elevate the [Ca i ] and to increase the release of [3H]GABA under the conditions in which the net Na+ movements are eliminated. These results clearly show that under physiological conditions (147 mM external Na+) nigericin behaves as a Na+/H+ ionophore, and all its effects are triggered by the entrance of Na+ in exchange for H+ through the ionophore itself. Nigericin behaves as a K+/H+ ionophore in synaptosomes just when the net Na+ movements are eliminated (i.e. under conditions in which the external and the internal Na+ concentrations are equal). In summary care must be taken when using the putative K+/H+ ionophore nigericin as an experimental tool in synaptosomes, as under standard conditions (i.e. in the presence of high external Na+) nigericin behaves as a Na+/H+ ionophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号