首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
采用无溶剂二氧化碳固态发泡技术,在2.5、3.5、4.0和5.0 MPa饱和压力下制备了泡孔孔径为350-20μm的聚乳酸支架材料.利用热重分析技术、动态热机械分析技术和扫描电子显微镜技术,测定了材料的起始分解温度、分解速率、储存/损耗模量和损耗因子等参数,并利用Kissinger、Ozawa-Doyle和Vyazovkin方程进行了热分解动力学计算,推算了氮气环境下材料的降解时间和使用寿命.结果表明,随着发泡压力的减小,支架材料的泡孔孔径增大,材料的柔韧性增强,表观活化能降低,降解时间缩短.  相似文献   

2.
新型PES微孔材料的制备及性能研究   总被引:1,自引:1,他引:0  
合成了新型双烯丙基聚醚砜(PES), 采用超临界CO2作为物理发泡试剂制备微孔材料, 研究了不同发泡温度、饱和压力、发泡时间和放气时间等因素对微孔形貌的影响. 结果表明, 发泡温度在110~170 ℃之间, 随着温度的升高, 泡孔直径增加, 泡孔密度在140 ℃达到一个最大值; 随着饱和压力的升高, 泡孔直径减小, 泡孔密度增大; 发泡时间和放气时间对微孔直径和密度影响不大; 研究了在不同辐照剂量下微孔材料的交联性能, 结果表明, 在600 kGy辐照剂量以下, 交联效果不明显, 在800 kGy以上, 随着辐照剂量的增大, 凝胶含量增加, 辐照后的样品在265 ℃热处理10 min, 仍能保持完好的微孔结构.  相似文献   

3.
结合作者课题组的工作,对近年来基于超临界CO_2的聚合物微孔发泡以及聚合物/碳纳米粒子复合体系的微孔发泡与电磁屏蔽进行了综述。首先对单一聚合物、多元聚合物和热固性聚合物的微孔发泡、泡孔结构和泡沫性能进行归纳总结,指出通过共混、共聚、结晶、交联网络与发泡工艺的调控可以获得泡孔尺寸更小、泡孔密度更高的聚合物微孔泡沫。随后,对热塑性聚合物/碳纳米粒子复合体系、热固性聚合物/碳纳米粒子复合体系的微孔发泡进行了综述,着重介绍了碳纳米粒子与泡孔结构之间的相互作用,指出借助于微孔发泡过程可以诱导碳纳米粒子在泡壁中富集、聚并、相互连接形成导电通道,从而制备出具有优异导电性和电磁屏蔽效应的轻质聚合物微孔材料。最后,对聚合物微孔材料以及聚合物微孔复合材料的未来发展提出了一些自己的看法。  相似文献   

4.
超临界流体制备微发泡聚合物材料的研究进展   总被引:2,自引:0,他引:2  
以超临界流体为物理发泡剂制备的微发泡聚合物材料具有小的泡孔尺寸和高的泡孔密度,从而赋予材料优异的性能.本文首先阐述了微发泡聚合物材料的制备原理,以及聚合物微发泡过程中泡孔形成的四个阶段;基于这些认识,针对微发泡聚合物材料泡孔形态的改善,即增加泡孔密度、减小泡孔尺寸以及均化泡孔尺寸分布,从加强泡孔成核、控制泡孔增长的角度综述了近年来的研究进展;最后对如何有效控制泡孔形态提出了建议,并对微发泡聚合物材料的应用前景进行了展望.  相似文献   

5.
通过室温模压/粒子浸出方法制备得到聚乙交酯丙交酯(PLGA)多孔支架,每个质量50 mg、孔径200~300μm、孔隙率略大于90%的PLGA85/15多孔支架在10 mL磷酸盐缓冲液(PBS)中37℃体外降解24周.降解液每周换一次,不同时间点的降解液被收集、并加入骨髓基质干细胞(MSC)的培养液或者成骨诱导液中,利用胞外乳酸脱氢酶含量检测、细胞死活染色、四唑盐检测、碱性磷酸酶染色和定量检测的方法考察降解液对MSC的活力和成骨分化能力的影响.实验结果表明,PLGA多孔支架材料在PBS中逐渐降解,其质量、尺寸、孔径、孔与孔的连通性、分子量有不同程度的降低;其降解液在本研究的实验条件下未发现对MSC有明显的细胞毒性,对MSC的活力、增殖以及成骨分化均无显著的负面影响.  相似文献   

6.
聚烯烃材料引入长支化结构,能够提升材料熔体强度和异相成核作用,使聚合物具备更加优异的发泡性能,从而扩宽材料的应用领域.本文利用甲基丙烯酸十八烷基酯(SMA)熔融改性聚丁烯(PB),发现其链段缠结程度提升,发泡行为改善.通过红外谱图的化学结构分析以及材料的力学性能分析,发现随着SMA添加量的增加,材料拉伸强度降低,冲击强度呈现先升高后降低的趋势.示差扫描量热(DSC)的分析结果表明改性PB的结晶度下降.采用间歇釜式法制备PB发泡珠粒,利用扫描电子显微镜(SEM)研究发泡珠粒泡孔结构,结果表明:SMA改性后,发泡珠粒平均泡孔尺寸、孔径分布、泡孔密度都得到改善,发泡温度窗口加宽且发泡稳定性提升.当添加SMA达到3份时,珠粒平均泡孔直径为12.3μm,泡孔密度可达38×10~7个/cm~3,发泡倍率接近12倍,其中泡孔密度和发泡倍率分别是纯PB发泡珠粒的9.2倍和1.6倍.本文的研究成果为PB作为发泡材料奠定了工业化基础.  相似文献   

7.
用高压CO2流体通过升温发泡法制备了一系列不同表观密度的热塑性聚氨酯(TPU)微孔发泡材料,探究了TPU发泡材料的表观密度与其力学性能的关系.微孔发泡材料的泡孔结构和表皮结构由扫描电子显微镜表征;不同表观密度材料的力学性能利用万能材料试验机和旋转流变仪表征.研究发现:TPU微孔发泡材料的表观密度主要是由材料皮层厚度占比和泡孔层密度决定的,皮层厚度占比越小和泡孔面积占有率越高,泡沫的表观密度越小;微孔发泡材料在线性应变区的压缩模量E与材料表观密度ρ的关系为:E∝ρ1.7,符合泡沫材料压缩模量与表观密度呈指数关系的基本结论;循环压缩实验中,随微孔发泡材料表观密度减小,损耗百分比增大,残余应变减小;流变实验中,微孔发泡材料的模量随表观密度变化没有明显的变化,阻尼因子tanδ随泡沫表观密度变化不呈单一的规律性.同时,阐明了微孔发泡材料的压缩模量E和损耗百分比随表观密度变化的机理.  相似文献   

8.
利用前端聚合结合发泡工艺制备了孔结构可调控的聚丙烯酰胺多孔水凝胶.研究发现溶剂和引发剂浓度变化对聚合前端的移动及形成的产物性能有重要影响.增加溶剂用量,聚合前端的移动速度和聚合前端最高温度下降,产物孔径增大,孔壁变厚,材料吸水溶胀性能降低;增加引发剂浓度,聚合前端移动速度显著加快,最高温度升高,产物的孔体积和溶胀率先增加后减小.  相似文献   

9.
许琳琼  黄汉雄 《高分子学报》2013,(11):1357-1362
以超临界二氧化碳(Sc-CO2)为物理发泡剂,在高压釜中采用两种温度设定方式和降压对聚苯乙烯(PS)进行发泡,测试、分析发泡样品的泡孔结构、泡体密度和断面润湿性能.结果表明,仅通过降压只获得单峰的泡孔结构,而升温与降压协同作用可获得双峰的泡孔结构,大、小泡孔分别在升温和降压阶段成核形成;在发泡温度100℃、饱和温度30~70℃下制备的发泡样品中,大、小泡孔的平均直径分别为50~216和10~15μm.大泡孔的直径较大和密度较高都有利于降低样品的泡体密度,最低达0.15 g/cm3.单峰泡孔结构能在一定程度上提高样品断面的疏水性,使静态接触角(CA)从PS的本征值(87.1°)增大至138.8°;双峰泡孔结构可赋予样品断面更高的CA(155.1°),呈现超疏水特性.  相似文献   

10.
聚合物发泡材料因其多孔结构及轻量化、冲击韧性好、隔热、吸音等性能而广泛应用于包装、建筑、隔热、吸音、组织支架、吸油等领域。相比于含单峰泡孔结构的发泡材料,具有双峰泡孔结构的聚合物微发泡材料因小泡孔可以提供良好的力学性能、隔热性能等,而大泡孔能够降低材料的表观密度,表现出更优异的性能。近年来,含双峰泡孔的微发泡材料备受关注。本文综述了具有双峰泡孔结构的聚合物微发泡材料的最新研究进展,包括双峰泡孔结构的制备方法、性能及其在力学、吸声、隔热以及组织工程等领域的应用,以及值得深入研究的问题和未来发展前景。  相似文献   

11.
Tissue engineering scaffolds require a controlled pore size and structure to host tissue formation from cell populations. Supercritical carbon dioxide (scCO2) processing can be used to form porous scaffolds in which the escape of CO2 from a plasticized polymer melt generates gas bubbles that shape the pores. The process is difficult to control with respect to changes in final pore size, porosity, and interconnectivity, while the solubility of CO2 in the polymers strongly affects the foaming process. An in‐depth understanding of polymer CO2 interaction will enable a successful scaffold processing. Amorphous poly(DL ‐lactic acid) (PDL LA) and poly(lactic acid‐co‐glycolic acid) (PLGA) polymers are attractive candidates for fabricating scaffolds. In this study, CO2 sorption and swelling isotherms at 35 °C and up to 200 bar on a variety of homo‐ and copolymers of lactic acid and glycolic acids are presented. Sorption is measured through a gravimetric technique using a suspension microbalance and swelling by visualization. The obtained results are modeled using the Sanchez‐Lacombe equation of state. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 483–496, 2008  相似文献   

12.
Tissue engineering scaffolds should provide a suitable porous structure and proper mechanical strength, which is beneficial for the delivery of growth factor and regulation of cells. In this study, the open‐porous polycaprolactone (PCL)/poly (lactic acid) (PLA) tissue engineering scaffolds with suitable porous scale were fabricated using different ratios of PCL/PLA blends. At the same time, the relationship of foaming process, morphology, and mechanical behavior in the optimized batch microcellular foaming process were studied based on the single‐factor experiment method. The porous structures and mechanical strength of the scaffolds were optimized by adjusting foaming parameters, including the temperature, pressure, and CO2 dissolution time. The results indicated that the foaming parameters influence the cell morphology, further determine the mechanical behavior of PCL/PLA blends. When the PCL content is high, with the increase of temperature and time, the cell diameter and the elastic modulus increased, and the tensile strength and elastic modulus increased with the increase of the average cell size, and decreased as the increase of the cell density. While when the PLA content was high, the cell diameter showed the same trend, and the tensile strength and elastic modulus were higher, and the elongation at break was lower, and tensile strength and elastic modulus decreased with the increase of the average cell size and increased with the increase of cell density. This work successfully fabricated optimized porous PCL/PLA scaffolds with excellent suitable mechanical properties, pore sizes, and high interconnectivity, indicating the effectiveness of modulating the batch foaming process parameters.  相似文献   

13.
In this article a new technique was developed to fabricate scaffolds with a unique microstructure by solid–liquid separation in combination with particulate-leaching. Firstly, the effects of polymer concentration, quenching temperature on the porous morphology and the mechanical property of obtained scaffolds during solid–liquid separation have been investigated. Then, salt granules as porogen were introduced into the solid–liquid phase separation to produce the unique pore structure of the scaffold. The pore diameter of the scaffold could be controlled with the particulate size and the wall of pores possessed special microstructure, which enhanced the pore interconnectivity. The cell culture results confirmed that a good interconnectivity of the scaffold prepared by the improved solid–liquid separation was useful for nutrition transportation and cell proliferation. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Open-pore biodegradable foams with controlled porous architectures were prepared by combining gas foaming and microparticulate templating. Microparticulate composites of poly(epsilon-caprolactone) (PCL) and micrometric sodium chloride particles (NaCl), in concentrations ranging from 70/30 to 20/80 wt.-% of PCL/NaCl were melt-mixed and gas-foamed using carbon dioxide as physical blowing agent. The effects of microparticle concentration, foaming temperature, and pressure drop rate on foam microstructure were surveyed and related to the viscoelastic properties of the polymer/microparticle composite melt. Results showed that foams with open-pore networks can be obtained and that porosity, pore size, and interconnectivity may be finely modulated by optimizing the processing parameters. Furthermore, the ability to obtain a spatial gradient of porosity embossed within the three-dimensional polymer structure was exploited by using a heterogeneous microparticle filling. Results indicated that by foaming composites with microparticle concentration gradients, it was also possible to control the porosity and pore-size spatial distribution of the open-pore PCL foams.  相似文献   

15.
A novel process was developed to fabricate biodegradable polymer scaffolds for tissue engineering applications, without using organic solvents. Solvent residues in scaffolds fabricated by processes involving organic solvents may damage cells transplanted onto the scaffolds or tissue near the transplantation site. Poly(L-lactic acid) (PLLA) powder and NaCl particles in a mold were compressed and subsequently heated at 180 degrees C (near the PLLA melting temperature) for 3 min. The heat treatment caused the polymer particles to fuse and form a continuous matrix containing entrapped NaCl particles. After dissolving the NaCl salts, which served as a porogen, porous biodegradable PLLA scaffolds were formed. The scaffold porosity and pore size were controlled by adjusting the NaCl/PLLA weight ratio and the NaCl particle size. The characteristics of the scaffolds were compared to those of scaffolds fabricated using a conventional solvent casting/particulate leaching (SC/PL) process, in terms of pore structure, pore-size distribution, and mechanical properties. A scanning electron microscopic examination showed highly interconnected and open pore structures in the scaffolds fabricated using the thermal process, whereas the SC/PL process yielded scaffolds with less interconnected and closed pore structures. Mercury intrusion porosimetry revealed that the thermally produced scaffolds had a much more uniform distribution of pore sizes than the SC/PL process. The utility of the thermally produced scaffolds was demonstrated by engineering cartilaginous tissues in vivo. In summary, the thermal process developed in this study yields tissue-engineering scaffolds with more favorable characteristics, with respect to, freedom from organic solvents, pore structure, and size distribution than the SC/PL process. Moreover, the thermal process could also be used to fabricate scaffolds from polymers that are insoluble in organic solvents, such as poly(glycolic acid). Cartilage tissue regenerated from thermally produced PLLA scaffold.  相似文献   

16.
In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.  相似文献   

17.
Porous scaffolds based on water-soluble PLGA and CS were prepared. The pores were verified to be alveolate, uniform and continuous. The effects of freezing temperature, freeze-drying time, solid content and molecular weight of reactants on the pore structure of the scaffolds were studied. The scaffold morphology could be adjusted by changing the freezing temperature and solid content of reacting polymer. Their degradation rate can be adjusted by changing the proportion of PLGA and CS. The porosity of scaffolds was higher than 90% and the high swelling ratio showed that these scaffolds had excellent hydrophilic performance. The in vitro culture of chondrocytes indicates that the obtained PLGA/CS porous scaffolds are very promising biomaterials for tissue engineering applications.  相似文献   

18.
Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 microm for PLGA and 73 microm for PS foams.  相似文献   

19.
Porous β-tricalcium phosphate (β-TCP) has been used for bone repair and replacement in clinics due to its excellent biocompatibility, osteoconductivity, and biodegradability. However, the application of β-TCP has been limited by its brittleness. Here, we demonstrated that an interconnected porous β-TCP scaffold infiltrated with a thin layer of poly(lactic-co-glycolic acid) (PLGA) polymer showed improved mechanical performance compared to an uncoated β-TCP scaffold while retaining its excellent interconnectivity and biocompatibility. The infiltration of PLGA significantly increased the compressive strength of β-TCP scaffolds from 2.90 to 4.19 MPa, bending strength from 1.46 to 2.41 MPa, and toughness from 0.17 to 1.44 MPa, while retaining an interconnected porous structure with a porosity of 80.65%. These remarkable improvements in the mechanical properties of PLGA-coated β-TCP scaffolds are due to the combination of the systematic coating of struts, interpenetrating structural characteristics, and crack bridging. The in vitro biological evaluation demonstrated that rat bone marrow stromal cells (rBMSCs) adhered well, proliferated, and expressed alkaline phosphatase (ALP) activity on both the PLGA-coated β-TCP and the β-TCP. These results suggest a new strategy for fabricating interconnected macroporous scaffolds with significantly enhanced mechanical strength for potential load-bearing bone tissue regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号