首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mukherjee  Sankar  Amin  Ruhul  Biswas  G. P. 《Wireless Networks》2019,25(7):4331-4347
Wireless Networks - An efficient routing protocol for a wireless sensor network (WSN) with multiple sinks is proposed. Sensor nodes containing three-sector antennas are deployed randomly in a...  相似文献   

3.
在分析了最小跳数路由算法局限性的基础上对该算法进行了改进,充分考虑了无线传感器网络的跳数、能量、负载均衡等问题。改进后的算法使得传感器的某些节点不会因为频繁使用而迅速死亡,数据包可以沿着最优的路径向网关节点发送。仿真结果显示,改进后的算法可以有效地提高无线传感器网络的可靠性和稳定性,延长了网络的通信时间。  相似文献   

4.
A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.  相似文献   

5.
An unequal cluster-based routing protocol in wireless sensor networks   总被引:3,自引:0,他引:3  
Clustering provides an effective method for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques; selecting cluster heads with more residual energy, and rotating cluster heads periodically to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spot problem in multihop sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavier relay traffic and tend to die much faster, leaving areas of the network uncovered and causing network partitions. To mitigate the hot spot problem, we propose an Unequal Cluster-based Routing (UCR) protocol. It groups the nodes into clusters of unequal sizes. Cluster heads closer to the base station have smaller cluster sizes than those farther from the base station, thus they can preserve some energy for the inter-cluster data forwarding. A greedy geographic and energy-aware routing protocol is designed for the inter-cluster communication, which considers the tradeoff between the energy cost of relay paths and the residual energy of relay nodes. Simulation results show that UCR mitigates the hot spot problem and achieves an obvious improvement on the network lifetime. Guihai Chen obtained his B.S. degree from Nanjing University, M. Engineering from Southeast University, and PhD from University of Hong Kong. He visited Kyushu Institute of Technology, Japan in 1998 as a research fellow, and University of Queensland, Australia in 2000 as a visiting professor. During September 2001 to August 2003, he was a visiting professor at Wayne State University. He is now a full professor and deputy chair of Department of Computer Science, Nanjing University. Prof. Chen has published more than 100 papers in peer-reviewed journals and refereed conference proceedings in the areas of wireless sensor networks, high-performance computer architecture, peer-to-peer computing and performance evaluation. He has also served on technical program committees of numerous international conferences. He is a member of the IEEE Computer Society. Chengfa Li was born 1981 and obtained his Bachelor’s Degree in mathematics in 2003 and his Masters Degree in computer science in 2006, both from Nanjing University, China. He is now a system programmer at Lucent Technologies Nanjing Telecommunication Corporation. His research interests include wireless ad hoc and sensor networks. Mao Ye was born in 1981 and obtained his Bachelor’s Degree in computer science from Nanjing University, China, in 2004. He served as a research assistant At City University of Hong Kong from September 2005 to August 2006. He is now a PhD candidate with research interests in wireless networks, mobile computing, and distributed systems. Jie Wu is a professor in the Department of Computer Science and Engineering at Florida Atlantic University. He has published more than 300 papers in various journal and conference proceedings. His research interests are in the areas of mobile computing, routing protocols, fault-tolerant computing, and interconnection networks. Dr. Wu serves as an associate editor for the IEEE Transactions on Parallel and Distributed Systems and several other international journals. He served as an IEEE Computer Society Distinguished Visitor and is currently the chair of the IEEE Technical Committee on Distributed Processing (TCDP). He is a member of the ACM, a senior member of the IEEE, and a member of the IEEE Computer Society.  相似文献   

6.
Haque  Md Enamul  Baroudi  Uthman 《Wireless Networks》2020,26(5):3715-3733
Wireless Networks - Currently, IEEE 802.11 standard for ad-hoc wireless mode is inadequate for multi-hop network. Recent efforts for the advancement of 802.11 standards, such as 11e for QoS support...  相似文献   

7.
基于LEACH协议的无线传感器网络路由算法的改进与仿真   总被引:2,自引:0,他引:2  
针对无线传感器网络中传感器能量有限的问题,从路由算法的角度出发,提出LEACH协议的低功耗改进方案.本文采用划定区域的方式对LEACH协议中的簇头选举进行改进,从而减少网络中节点分布不均匀的情况对簇头节点能量损耗所造成的影响,并使用NS-2进行协议改进前后的仿真.仿真实验结果表明,协议改进后网络生存期有效增长,能量消耗...  相似文献   

8.
Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. Several network layer protocols have been proposed to improve the effective lifetime of a network with a limited energy supply. In this article we propose a centralized routing protocol called base-station controlled dynamic clustering protocol (BCDCP), which distributes the energy dissipation evenly among all sensor nodes to improve network lifetime and average energy savings. The performance of BCDCP is then compared to clustering-based schemes such as low-energy adaptive clustering hierarchy (LEACH), LEACH-centralized (LEACH-C), and power-efficient gathering in sensor information systems (PEGASIS). Simulation results show that BCDCP reduces overall energy consumption and improves network lifetime over its comparatives.  相似文献   

9.
Energy efficiency and quality of service (QoS) are both essential issues in the applications of wireless sensor networks (WSNs) all along, which are mainly reflected in the development of routing and MAC protocols. However, there is little design for achieving the dual performances simultaneously. In this paper, we develop a practical passive cluster-based node-disjoint many to one multipath routing protocol to satisfy the requirements of energy efficiency and QoS in practical WSNs. Passive clustering approach is put to use in the first round, while active clustering technique is taken in the other rounds. Implementation of smart delay strategy makes the cluster distribute uniformly, as well as lessen the number of nodes that have taken part in routing. Among cluster heads, a node-disjoint many to one multipath routing discovery algorithm, which is composed of the optimal path searching process and multipath expansion process, is implemented to find multiple paths at the minimum cost. The simulation results show the proposed protocol achieved very good performance both in energy efficiency and QoS.  相似文献   

10.
在无线传感器网络中,分簇型路由在路由协议中占据重要的地位,该协议方便拓扑结构管理,能源利用率高,数据融合简单。文章从簇头生成、簇形成和簇路由3个角度对典型的分簇路由算法LEACH,HEED,EEUC,PEGASIS进行了系统描述,从网络生命周期和节点存活数量等方面,对比了其优缺点,结合该领域的研究现状,指出了未来研究的方向。  相似文献   

11.
卫琪 《电子测试》2011,(4):86-90
针对LEACH协议存在的3大问题:簇头选举时未考虑节点剩余能量、频繁成簇造成了大量额外能耗以及欠缺对簇间能耗均衡的考虑,提出了能量有效分簇路由协议(LEACH-improved).该协议中,首轮成簇后网络中簇的分布和数量将保持不变,以后每轮各簇的簇头由上一轮簇头结合节点的能量水平来指定,借鉴泛洪算法的思想,在簇间建立多...  相似文献   

12.
In wireless sensor networks (WSNs), sensors gather information about the physical world and the base station makes decision and then performs appropriate actions upon the environment. This technology enables a user to effectively sense and monitor from a distance in real‐time. WSNs demand real‐time forwarding which means messages in the network are delivered according to their end‐to‐end deadlines (packet lifetime). This paper proposes a novel real‐time routing protocol with load distribution (RTLD) that ensures high packet throughput with minimized packet overhead and prolongs the lifetime of WSN. The routing depends on optimal forwarding (OF) decision that takes into account of the link quality (LQ), packet delay time and the remaining power of next hop sensor nodes. The proposed mechanism has been successfully studied through simulation work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Hierarchical routing and clustering mechanisms in Wireless Sensor Networks (WSN) help to reduce the energy consumptions and the overhead created when all the sensor nodes in the network are sending information to the central data collection point. Most of the routing and clustering protocols proposed for WSN assume that the nodes are stationary. However, in applications like habitat monitoring or search and rescue, that assumption makes those clustering mechanisms invalid, since the static nature of sensors is not real. In this paper, we propose Zone-based Routing Protocol for Mobile Sensor Networks (ZoroMSN) that considers the design aspects such as mobility of sensors, zones and routes maintenance, information update and communication between sensor nodes. Simulation results show the effectiveness and strengths of the ZoroMSN protocol such as a low routing and mobility overhead, while achieving a good performance in WSN using small zone sizes and sensors with low speed. Simulation results also show that ZoroMSN outperforms existing LEACH-ME and LEACH-M protocols in terms of network lifetime and energy consumptions.  相似文献   

14.
A wireless underground sensor network (WUSN) is defined as a network of wireless sensor devices in which all sensor devices are deployed completely underground (network sinks or any devices specifically for relay between sensors and a sink may be aboveground). In hybrid wireless underground sensor network (HWUSN), communication between nodes is implemented from underground‐to‐air or air‐to‐underground, not underground‐to‐underground. This paper proposes a novel hybrid underground probabilistic routing protocol that provides an efficient means of communication for sensor nodes in HWUSN. In addition, signal propagation based on the shadowing model for underground medium is developed. The proposed routing protocol ensures high packet throughput, prolongs the lifetime of HWUSN and the random selection of the next hop with multi‐path forwarding contributes to built‐in security. Moreover, the proposed mechanism utilizes an optimal forwarding (OF) decision that takes into account of the link quality, and the remaining power of next hop sensor nodes. The performance of proposed routing protocol has been successfully studied and verified through the simulation and real test bed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.

Wireless sensor networks (WSNs) have grown excessively due to their various applications and low installation cost. In WSN, the main concern is to reduce energy consumption among nodes while maintaining timely and reliable data forwarding. However, most of the existing energy aware routing protocols incur unbalanced energy consumption, which results in inefficient load balancing and compromised network lifetime. Therefore, the main target of this research paper is to present adaptive energy aware cluster-based routing (AECR) protocol for improving energy conservation and data delivery performance. Our proposed AECR protocol differs from other energy efficient routing schemes in some aspects. Firstly, it generates balance sized clusters based on nodes distribution and avoids random clusters formation. Secondly, it optimizes both intra-cluster and inter-cluster routing paths for improving data delivery performance while balancing data traffic on constructed forwarding routes and at the end, in order to reduce the excessive energy consumption and improving load distribution, the role of Cluster Head (CH) is shifted dynamically among nodes by exploit of network conditions. Simulation results demonstrate that AECR protocol outperforms state of the art in terms of various performance metrics.

  相似文献   

16.
Dhanalakshmi  B.  SaiRamesh  L.  Selvakumar  K. 《Wireless Networks》2021,27(2):1503-1514
Wireless Networks - In this work, a new protocol is proposed for sender-based responsive techniques on energy, mobility, and effective routing for Wireless Sensor Networks (WSNs). It addresses...  相似文献   

17.
无线传感器网络地理路由协议要求节点根据少量本地路由信息将数据分组传输路由到目标节点。为了消除路由环,地理路由算法通常需要将网络拓扑平面化。然而现有的平面化算法要么假设节点的通信半径是一固定值,在实际应用中不适用;要么对每一条链路都进行检测是否有交叉链路,路由维护代价很高。针对以上问题,提出一种具有高可靠性和低维护成本的地理路由协议RPR(region partitioning-based routing),其基本思想是将网络划分为规则多边形区域,并在贪心路由失败时将多边形区域内的所有节点看作一个虚拟节点进行周边路由。多边形区域间通信能够降低平均路由路径长度,从而提高了路由的可靠性。基于区域划分的网络平面化策略不需要检测和删除相交链路,因此减少了路由维护开销。模拟实验结果显示,RPR协议比现有方法的平均路由路径长度更短,路由维护开销更低。  相似文献   

18.
赵海霞 《信息技术》2006,30(9):44-48
GEAR路由是无线传感器网络中一种高效的位置和能量感知的地理路由协议,在抵御路由攻击方面有较好的特性,但是GEAR路由不能抵御虚假路由、女巫、选择性转发等攻击。针对该问题,提出了一种适合无线传感器网络特征的、基于位置密钥对引导模型的安全GEAR路由协议SGEAR,并对该协议进行了性能分析,分析显示在较小的系统开销下,SGEAR能有效抑制上述攻击及DoS攻击。  相似文献   

19.
在无线传感网络中,节点的资源限制给路由协议的设计提出了挑战。在高数据率应用场景中,带宽和存储容量成为其主要问题。为此,提出基于多信道协作负载均衡算法(M-CoLBA)的路由协议来提升网络带宽,并避免因队列溢出导致的数据包丢失。M-CoLBA协议先利用拥塞感知的动态路由度量均衡流量负载,再依据队列时延选择下一跳转发节点。实验数据表明,与单一信道路由协议(S-CoLBA)和多信道协议(M-HopCount)相比,提出的M-CoLBA协议具有较高的数据包传递率。  相似文献   

20.
赵太飞 《光电子快报》2010,6(6):449-453
Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2010 In this paper the solar-blind ultraviolet (UV) light is used as communication medium for wireless sensor networks (WSNs). Three types of single scattering UV communication models are introduced and a directional flooding model is proposed, which are based on the directionality of the UV communication and the traditional flooding routing model. The delay, delay jitter, throughput and energy consumption of the three types of communications of the new model are simulated and compared. The results indicate that the proposed directional flooding model can effectively avoid the unidirectionality and the blindness of the traditional flooding broadcast messages. The energy consumption of nodes in the network is reduced and the life cycle of the network is extended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号