首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper reports the findings of experimental studies on combined free and forced convection through a plain square duct in laminar region. The test fluid flows through an inner square duct, hot water at high flow rate circulated through a annular channel formed between square duct and circular tube, in counter current fashion to attain a nearly uniform wall temperature conditions. The importance of mixed convection is judged by the value of the Richardson number (Ri). It was observed that at low Reynolds number, heat transfer was mainly governed by mixed convection. However at higher values of Reynolds number, heat transfer was significantly dominated by forced convection. It was found that Reynolds number higher than 1050 for water and 480 for ethylene glycol resulted in laminar forced convention heat transfer. The empirical correlation developed for Nusselt number in terms of Grashoff number and Graez number, was found to fit with experimental Nusselt number within ±11 and ±12?% for water and ethylene glycol respectively.  相似文献   

3.
The present paper deals with the study of heat and mass transfer by mixed convection in an inclined duct preceded with a double step expansion. The control volume based finite element method was used to solve the set of non-dimensional equations for the vorticity, stream function, energy and species conservation. Numerical simulations are carried out for different combinations of the Lewis number, thermal and mass diffusion Grashof numbers for different inclinations. Streamlines, temperature and concentration distributions are presented and discussed. The results show the effect of the secondary flow induced by buoyancy forces and the presence of the double step expansion on the heat and mass transfer mechanism. It is found that the recirculation vortices induced by the expansion can be present along the channel and the flow structure can be wavy. For the vertical orientation, asymmetric fields are observed for the different simulated cases.  相似文献   

4.
 The laminar and parallel flow of a Newtonian fluid in a vertical cylindrical duct with circular cross section has been analysed. Both the viscous dissipation effect and the buoyancy effect have been taken into account. The momentum balance equation and the energy balance equation have been solved by means of a perturbation method, in the case of a uniform heat flux prescribed at the wall of the duct. The velocity distribution, the temperature distribution, the Nusselt number and the Fanning friction factor have been evaluated analytically. Moreover, the velocity and temperature of the fluid have been compared with those obtained in two special cases: forced convection with viscous dissipation (i.e. negligible buoyancy effect); mixed convection with negligible effects of viscous dissipation. Received on 26 June 2000  相似文献   

5.
This paper presents the results of a comprehensive numerical study to analyze conjugate, turbulent mixed convection heat transfer from a vertical channel with four heat sources, uniformly flush-mounted to one of the channel walls. The results are presented to study the effect of various parameters like thermal conductivity of wall material (k s), thermal conductivity of flush-mounted discrete heat source (k c), Reynolds number of fluid flow (Re s), modified Richardson number (Ri +) and aspect ratio (AR) of the channel. The standard k-ε turbulence model, modified by including buoyancy effects with physical boundary conditions, i.e. without wall functions, has been used for the analysis. Semi-staggered, non-uniform grids are used to discretise the two dimensional governing equations, using finite volume method. A correlation, encompassing a wide range of parameters, is developed for the non-dimensional maximum temperature (T *) using the asymptotic computational fluid dynamics (ACFD) technique.  相似文献   

6.
This paper reports a numerical study on buoyancy-aided steady convection heat transfer from a horizontal cylinder situated in a vertical adiabatic duct. Numerical results have been generated forH 1/D=2.5, 4, 8,H/D=8, 16, 24,S/D=2, 4, 6, 20Re60, andRi up to 4. The placing of a horizontal cylinder in a vertical duct of smaller width results in significantly enhanced pure forced convection due to the blockage effect, but degrades appreciably the extent of buoyancy-aided enhancement in the heat transfer rate. Nevertheless, the presence of a vertical duct leads to an overall enhancement of mixed convection heat transfer coefficient relative to that without the confining duct. Moreover, the average Nusselt number is rather insensitive to the variation of either the position of the cylinder in the duct or the duct height in the investigated ranges of these geometric parameters.Dieser Artikel beschreibt eine numerische Studie über auftriebsunterstützte konvektive Wärmeübertragung von einem horizontalen Zylinder der in einem vertikalen adiabaten Kanal positioniert ist. Die numerischen Ergebnisse sind fürH 1/D=2, 5, 4, 8,H/D=8, 16, 24,S/D=2, 4, 6 sowie 20Re60 undRi bis 4 berechnet worden. Die Anordnung des horizontalen Zylinders in einem schmaleren vertikalen Kanal führt auf Grund des Blockierungs-effektes zu einem deutlichen Anstieg der reinen Zwangskonvektion. Aber sie verschlechtert deutlich den Betrag der auftriebsbedingten Steigerung in der Wärmeübergangsrate. Trotzdem führt die Anwesenheit des vertikalen Kanals insgesamt zu einer Steigerung des Wärmeübergangskoeffizienten bei Mischkonvektion im Vergleich zur Abwesenheit des begrenzenden Kanals. Des weiteren ist die durchschnittliche Nusseltzahl von der Variation der Zylinderposition im Kanal oder der Kanalhöhe abhängig.  相似文献   

7.
This paper presents a new predictive model of droplet flow and heat transfer from molten salt droplets in a direct contact heat exchanger. The process is designed to recover heat from molten CuCl in a thermochemical copper–chlorine (Cu–Cl) cycle of hydrogen production. This heat recovery occurs through the physical interaction between high temperature CuCl droplets and air. Convective heat transfer between droplets and air is analyzed in a counter-current spray flow heat exchanger. Numerical results for the variations of temperature, velocity and heat transfer rate are presented for two cases of CuCl flow. The optimal dimensions of the heat exchanger are found to be a diameter of 0.13 m, with a height of 0.6 and 0.8 m, for 1 and 0.5 mm droplet diameters, respectively. Additional results are presented and discussed for the heat transfer effectiveness and droplet solidification during heat recovery from the molten CuCl droplets.  相似文献   

8.
In all studies concerning laminar mixed convection along a vertical isothermal moving cylinder a linear relationship between fluid density and temperature has been used and viscosity and thermal conductivity have been considered constant. However, it is known that the density-temperature relationship for water is non-linear at low temperatures and viscosity and thermal conductivity are functions of temperature. In this study the problem of water laminar mixed convection along a vertical isothermal moving cylinder has been investigated in the temperarure range between 20 °C and 0 °C taking into account the temperature dependence of μ, k and ρ. The results are obtained with the numerical solution of the boundary layer equations. The variation of μ, k and ρ with temperature has a strong influence on mixed convection characteristics.  相似文献   

9.
Summary The fluctuating free convection flow along a semi-infinite vertical plate is considered when the plate temperature is of the form T p –T =(T 0 –T ) where 0 < 1, denotes the frequency of oscillation and the mean temperature T 0T is proportional to n (0 n < 1). Flow and temperature fields have been obtained by means of two asymptotic expansions. For small values of the frequency parameter , a regular expansion is obtained while for large the method of matched asymptotic expansion is used. It is found that the skin friction and the rate of heat transfer obtained from two expansions overlap satisfactorily for a certain value of . For n=1 the flow governing equations to a semisimilar form, and have been solved by finite difference method. The results obtained from the series and the finite difference methods are in good agreement.
Oszillierender Wärmeübergang an einer halbunendlichen senkrechten Platte bei freier Konvektion
Übersicht Betrachtet wird die fluktuierende freie Konvektionsströmung längs einer halbunendlichen senkrechten Platte, deren Temperatur dem Gesetz T p –T =(T 0T ) [1+ sin {ie1-03}] folgt, wobei 0 < 1 gelte, {ie1-04} die Frequenz ist und der Temperatur-Mittelwert T 0T proportional zu n (0 n < 1) ist. Mit Hilfe zweier asymptotischer Entwicklungen werden die Strömungs- und Temperaturfelder gewonnen. Für kleine Werte des Frequenzparameters wird eine gewöhnliche Entwicklung benutzt, für große die Methode angepaßter asymptotischer Entwicklungen. Es stellt sich heraus, daß die Oberflächenreibung und die Wärmeübergangsrate aus zwei Entwicklungen für ein bestimmtes zufriedenstellend aufeinander fallen. Für n=1 werden die Grundgleichungen zueinander ähnlich und werden nach der Finite-Differenzen-Methode gelöst. Die Ergebnisse nach den Reihenentwicklungen und der Finite-Differenzen-Methode stimmen gut überein.
  相似文献   

10.
This paper reports a fundamental study of laminar natural convection in a rectangular enclosure with heat and mass transfer from the side, when the bouyancy effect is due to density variations caused by either temperature or concentration variations. In the first part of the study scale analysis is used to determine the scales of the flow, temperature and concentration fields in boundary layer flow for all values of Prandtl and Lewis numbers. In particular, scale analysis shows that in the extreme case where the flow is driven by bouyancy due to temperature variations, the ratio of mass transfer rate divided by heat transfer rate scales as Le12 only if (Pr > 1, Le < 1) or (Pr < 1, Sc < 1), and as Le13 if (Pr > 1, Le > 1) or (Pr < 1, Sc > 1). In the second part of the study, the boundary layer scales derived in the first part are used to determine the heat and mass transport characteristics of a vertical slot filled with fluid. Criteria for the existence of distinct thermal and concentration boundary layers in the slot are determined. Numerical solutions for the flow and concentration fields in a slot without distinct thermal boundary layers are reported. These solutions support further the method of scale analysis employed in the first part of the study  相似文献   

11.
12.
Experimental investigations have been reported on steady state natural convection from the outer surface of vertical rectangular and square ducts in air. Seven ducts have been used; three of them have a rectangular cross section and the rest have square cross section. The ducts are heated using internal constant heat flux heating elements. The temperatures along the vertical surface and the peripheral directions of the duct wall are measured. Axial (perimeter averaged) heat transfer coefficients along the side of each duct are obtained for laminar and transition to turbulent regimes of natural convection heat transfer. Axial (perimeter averaged) Nusselt numbers are evaluated and correlated using the modified Rayleigh numbers for laminar and transition regime using the vertical axial distance as a characteristic length. Critical values of the modified Rayleigh numbers are obtained for transition to turbulent. Furthermore, total overall averaged Nusselt numbers are correlated with the modified Rayleigh numbers and the area ratio for the laminar regimes. The local axial (perimeter averaged) heat transfer coefficients are observed to decrease in the laminar region and increase in the transition region. Laminar regimes are obtained at the lower half of the ducts and its chance to appear decreases as the heat flux increases.  相似文献   

13.
The steady laminar boundary layer flow, with an external force, along a vertical isothermal plate is studied in this paper. The external force may be produced either by the motion of the plate or by a free stream. The fluid is water whose density-temperature relationship is non-linear at low temperatures and viscosity and thermal conductivity are functions of temperature. The results are obtained with the numerical solution of the boundary layer equations with , k and variable across the boundary layer. Both upward and downward flow is considered. It was found that the variation of , k and with temperature has a strong influence on mixed convection characteristics.Nomenclature cp water specific heat - f dimensionless stream function - g gravitational acceleration - Grx local Grashof number - k thermal conductivity - Nux local Nusselt number - Pr Prandtl number - Pra ambient Prandtl number - Rex local Reynolds number - s salinity - T water temperature - Ta ambient water temperature - To plate temperature - u vertical velocity - ua free stream velocity - uo plate velocity - v horizontal velocity - x vertical coordinate - y horizontal coordinate - pseudo-similarity variable - nondimensional temperature - dynamic viscosity - f film dynamic viscosity - o dynamic viscosity at plate surface - kinematic viscosity - buoyancy parameter - water density - a ambient water density - f film water density - o water density at plate surface - physical stream function  相似文献   

14.
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number.  相似文献   

15.
The influences of buoyancy on turbulent heat transfer to a liquid metal flowing in a vertical pipe are considered. A theoretical model is presented which provides a criterion for the conditions under which such influences become significant and which predicts the impairment of heat transfer for upward flow and enhancement for downward flow. The variation with Peclet number of the maximum impairment of heat transfer and conditions under which it occurs are established. A generalization of the model leading to an equation for the entire mixed convection region is proposed. From this an equation for turbulent free convection to liquid metals is obtained.  相似文献   

16.
17.
The problem of combined free and forced convective magnetohydrodynamic flow in a vertical channel is analysed by taking into account the effect of viscous and ohmic dissipations. The channel walls are maintained at equal or at different constant temperatures. The velocity field and the temperature field are obtained analytically by perturbation series method and numerically by finite difference technique. The results are presented for various values of the Brinkman number and the ratio of Grashof number to the Reynolds number for both equal and different wall temperatures. Nusselt number at the walls is determined. It is found that the viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. It is also found that the analytical and numerical solutions agree very well for small values of ε.  相似文献   

18.
19.
The problem of condensation by mixed convection in a vertical channel has been numerically analyzed for an air water system. The plates of the channel are subjected to uniform but different heat fluxes. The effects of ambient conditions on the condensation process are investigated. The results show particularly the existence of a particular temperature called inversion temperature for condensation. This temperature is defined as the temperature above it the condensation rate is higher for a lower vapor concentration. It was found that this temperature increases with the increase of the ambient pressure and decreases with the cooling heat flux.  相似文献   

20.
基于分数阶Maxwell模型和分数阶Fourier定律构建黏弹性纳米流体在垂直板上的非定常二维边界层自然对流与传热控制方程,利用有限差分和L1算法获得数值稳定解,对不同物理参数下的速度、温度、平均表面摩擦系数和平均Nusselt数的变化趋势进行图形化分析。结果显示,速度和温度边界层均表现出短暂记忆和延迟特性;速度分数导数参数削弱了自然对流,而速度松弛时间的影响却相反;温度分数导数参数削弱了自然对流和热传导,而温度松弛时间的影响却相反。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号