首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The University of Chile transit radiotelescope is a 528-dipole array operating at 45 MHz. We present a comparison of an experimental study of the antenna radiation pattern with the basic theoretical pattern in three dimensions. We concentrate in the meridian plane diagram since this is particularly difficult to measure for an array like ours. The comparison shows excellent agreement. We have measured several important antenna parameters like the effective area as a function of zenith distance, the orientation of the plane of the array and the pointing accuracy. We include a detailed treatment of these subjects since not much information related to low frequency arrays for radio astronomy can be found in the literature. We discuss the importance of knowing these parameters in the preparation of the 45-MHz Sky Survey under way at the University of Chile Radio Observatory.  相似文献   

2.
3.
Frequency selective surfaces (FSSs) with the Jerusalem-cross array configuration have been developed for simultaneous observations of radio astronomical sources at the 40GHz and 80GHz bands. For supporting material, PET(polyethylene terephthalate: 200×220mm large, 12m thick, permittivity 3.0) was used, and copper was used for the conducting array. The measured characteristics were in good agreement with the calculated ones. The fabricated FSS has low insertion losses of less than 0.2dB and little distortion of polarization for each band. The characteristics of the developed FSS satisfy radio astronomical requirements.  相似文献   

4.
Radio astronomy started in Cambridge immediately after the hostilities of the World War II have ceased. Martin Ryle was the inspiring leader of a small group that started to develop interferometry techniques at the Cavendish Laboratory. From this development came the numerous Cambridge radio source surveys culminating in the Nobel prize awarded to Martin Ryle for invention of aperture synthesis. The history of this early development is the subject of the present paper. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
It is suggested that the development of the SKA will drastically change the face of radio astronomy in the 21st Century. A FAST-style SKA would admit observations of low contrast features, and would be the best design for studying the `dark ages' of the Universe (x≫ 1) where sub-arcmin total power instruments can usefully be employed. To date there have been no proposals for post-SKA, billion square-metra instruments; we speculate that mobile communication systems can be used. In the very distant future, SKA multi-beam systems could be used to collect signals reflected by Solar system bodies such as the asteroid belt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
We report investigations of digital array scanned interferometers (DASI) with silicon CCD array detectors to define the operational capabilities of a mapping (polarimetric) spectrometer for astronomical applications based on these instruments. For spectral mapping, we demonstrate spatially resolved spectra using a cylindrical lens to image in the interferometer's redundant coordinate. We demonstrate enhanced spectral resolution with a band limiting filter and standard aliasing techniques. The signal-to-noise characteristics of the Fourier transformed data are demonstrated with regard to the effects of a rectangular sampling function, spectral multiplexing and the pixel-to-pixel variation of the CCD array.These data indicate that DASIs can offer simple, versatile (polarization) mapping spectrometers suitable for spectral mapping observations from the ultraviolet to the infrared of extended sources at variable spatial resolution, particularly where long term stable operation is essential, as for spaceraft instruments.This research was supported by NASA under grants NAGW-122 and NAGW-1801.  相似文献   

7.
Following the detection of extraterrestrial radio waves in 1932 by Karl Jansky, radio astronomy developed quickly after World War II. It established itself soon as a new branch of astronomy with today's outstanding record in the detection of new phenomena in space. These have been honoured by a number of Nobel prizes. Radio astronomy largely depends on technical developments in receiver technology, antenna systems, electronics and computing power. Ever shorter wavelengths down to the submm‐wavelength range became accessible, resulting in new exciting discoveries. However, now and in future care must be taken, in particular for the lower frequency range, of harmful man‐made interferences, which might mask the weak signals from space. New international facilities with orders‐of‐magnitude higher sensitivity like ALMA and SKA are planned or under construction. Space‐borne observatories like PLANCK will detect weak fluctuations of the cosmic microwave background, which will constrain cosmological models with an unprecedented accuracy.  相似文献   

8.
9.
In this paper we examine the possibility of adopting standards within the context of radio astronomy and the benefits to be derived thereby. In particular we consider the application of standards within the three areas of the receiver hardware, the control and communication between different parts of the observing system, and the interface with the astronomer. The adoption of such standards will increase flexibility of observing systems, allow the easy interchange of equipment between observatories and greatly simplify guest observing. In this paper we will only consider the application of standards within the field of millimetre-wave and sub-millimetre-wave single dish astronomy. However, the principle can be easily extended to other astronomical wavebands. We describe some current developments at the Onsala Space Observatory which illustrate the proposed philosophy and show how such standards may be implemented. Naturally, the detailed definition of such standards would have to be agreed in conjunction with other interested astronomical institutions.  相似文献   

10.
Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall “big picture” astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.  相似文献   

11.
The increasing array size of radio astronomy interferometers is causing the associated computation to scale quadratically with the number of array signals. Consequently, efficient usage of alternate processing architectures should be explored in order to meet this computational challenge. Affordable parallel processors have been made available to the general scientific community in the form of the commodity graphics card. This work investigates the use of the Graphics Processing Unit in the parallelisation of the combined conjugate multiply and accumulation stage of a correlator for a radio astronomy array. Using NVIDIA’s Compute Unified Device Architecture, our testing shows processing speeds from one to two orders of magnitude faster than a Central Processing Unit approach.  相似文献   

12.
We describe here a far-infrared photometer capable of detecting simultaneously in three bands in the region 20–120 microns, each band having an array of 3 or 4 photoconductive detectors. We present and discuss its laboratory performance and the results obtained on the planet Venus during an air-borne observational programme using a 32.5 cm telescope. We also present the atmospheric spectra obtained by a Michelson interferometer aboard the aircraft.  相似文献   

13.
The size of a radio quiet zone (RQZ) is largely determined by transmission losses of interfering signals, which can be divided into free space loss and diffraction loss. The free space loss is dominant. The diffraction loss presented in this paper is described as unified smooth spherical and knife edge diffractions, which is a function of minimum path clearance. We present a complete method to calculate the minimum path clearance. The cumulative distribution of the lapse rate of refractivity (g n ), between the earth surface and 1 km above, is studied by using Chinese radio climate data. Because the size of an RQZ is proportional to g n , the cumulative distribution of g n can be used as an approximation for the size of the RQZ. When interference originates from mobile communication or television transmissions at a frequency of 408 MHz, and $\overline {g_n } $ is 40 N/km, where the refractivity $N=\left( {n-1} \right) \times 10^6$ , the size of the RQZ would be 180 km for a mobile source or 210 km for a television source, with a probability in the range of 15–100% in different months and for different stations. When speaking of the size of an RQZ, the radius in the case of a circular zone is implied. It results that a size of an RQZ is mainly influenced by transmission loss rather than effective radiated power. In the case where the distance between an interfering source and a radio astronomical observatory is about 100 km, at a frequency of 408 MHz, the allowable effective radiated power of the interfering source should be less than ?30 dBW with a probability of about 85% for $\overline {g_n } $ equals 40 N/km, or ?42 dBW with a probability less than 1 % for $\overline {g_n } $ equals 80 N/km.  相似文献   

14.
Synchrotron radiation by relativistic electrons spiralling in magnetic fields is a mainstay of radio astronomy, accounting for emissions from many objects. Conventional models assume that electrons radiate singly, so power scales with number of electrons. Yet recently jets from active galactic nuclei have shown very high luminosity, inconsistent with plausible single-particle synchrotron emission. We report experiments showing that, by stimulating plasma instabilities with relativistic electron beams, one can induce increases in the synchrotron emission by factors of ∼106. Enhancement presumably arises from coherent bunching of the relativistic electrons as they spiral in an ambient magnetic field. Polarization measurements suggest that electrons radiatively cooperate on scales of ∼6.6 cm. Radio telescope Stokes parameters may be able to reveal such polarization effects in high-brightness sources, a new observing diagnostic.  相似文献   

15.
The development of radio astronomy at the Hartebeesthoek Radio Astronomy Observatory in South Africa is described. The Hartebeesthoek site was established originally by NASA as one of three Deep Space Stations equipped with 26-m parabolic reflector antennas. It was first used for radio astronomy by South Africa in terms of the NASA host nation agreement which allowed for its use at times when the facility was not needed for its primary purpose of tracking space probes. After NASA withdrew from South Africa in 1975, the South African Council for Scientific and Industrial Research took over the site and the 26-m parabolic reflector antenna, which NASA had abandoned in position, and established it as a national observatory. The development of the facility to the stage where it could support a variety of observing programmes such as continuum observations and mapping, spectroscopy and pulsar timing is described as well as the role played by the Observatory in global programmes of very long baseline interferometry.  相似文献   

16.
The Hartebeesthoek Radio Astronomy Observatory has played a key role in the development of very long baseline interferometry (VLBI) in the southern hemisphere since 1971. This paper describes how the VLBI programme evolved and the instrumentation used. Contributions to high resolution mapping of compact radio sources are described, for both the Southern Hemisphere VLBI Experiment, SHEVE, and for Global networks, where HartRAO has made significant improvements in the N-S resolution. The unique geographical location of the telescope has been used to establish the terrestrial reference frame in the southern hemisphere and to measure tectonic motions over the past nine years. The Observatory has also been a fundamental station in extending the celestial reference frame defined by extragalactic radio sources to the southern hemisphere, and results of these programmes are given.  相似文献   

17.
We have developed an active dipole that is intended for use in new generation low frequency array applications. The preamplifier of the active dipole has very high linearity (input IP2 = 70 dBm, input IP3 = 31 dBm) and low noise temperature (100?C360 K). The frequency dependence of the dipole impedance and the match between the dipole and preamplifier have been optimized to achieve Galactic noise limited operation. The ratio between the antenna temperature due to Galactic noise and the noise temperature of the preamplifier is 10 ± 1.5 dB over the whole 10 to 70 MHz range. The total cost of the active cross-dipole is 220 euro.  相似文献   

18.
Initial studies of the Sun's corona using a solar radar were done in the 1960s and provided measurements of the Sun's radar cross-section at about 38 MHz. These initial measurements were done at a time when the large-scale phenomenon known as a coronal mass ejection was unknown; however, these data suggest that coronal mass ejections (CMEs) may have been detected but were unrecognized. That solar radar facility, which was located at El Campo, TX, no longer exists. New solar radar investigations are motivated by our modern understanding of CMEs and their effects on the Earth. A radar echo from an Earthward-directed coronal mass ejection may be expected to have a frequency shift proportional to velocity; thus providing a good estimate of arrival time at Earth and the possible occurrence of geomagnetic storms. Solar radar measurements may also provide new information on electron densities in the corona. The frequencies of interest for solar radars fall in the range of about 10–100 MHz, corresponding to the lower range planned for the low-frequency array. In combination with existing or new high-power transmitters, it is possible to use the low-frequency array to re-initiate radar studies of the Sun's corona. In this report, we review the basic requirements of solar radars, as developed in past studies and as proposed for future investigations.  相似文献   

19.
The Miyun metre-wave aperture synthesis radiotelescope, working at frequency of 232 MHz, consists of an E-W array of 28 elements, each of 9 m aperture. 192 baselines are effected with a full coverage of the U-V plane (Fig. 2). The longest baseline is 1,164m. This instrument is designed for source survey and detection of peculiar sources in northern declinations. A set of observations completed in 2 × 12 hours gives a thermal noise limited sensititity of 0.05 Jy and a resolution of 3'8 × 3'8 csc δ. The field of view is 8° × 8°. This should enable us to complete an overall survey of the region δ ⩾ + 30° within two years, and to carry out monitoring of selected areas.Figures 1 and 2 show the main properties and general design of the instrument and Figures 3 and 4 give some preliminary results of sky mapping.  相似文献   

20.
Complementary to the conventional dish radio telescopes, aperture arrays provide a technically attractive approach to achieve a large field of view and flexibility in observational parameters e.g. Sky area vs. bandwidth. Designs of both aperture array elements and overall geometry for the SKA Mid Frequency Aperture Array are presented here, together with resulting trade-offs. The paper reports the latest developments of global efforts on the front-end design of Mid-Frequency Aperture Array, not attempting to make technology selections, as the priority of sciences and the time for implementing Mid-Frequency Aperture Array is yet to be fully confirmed. Different on-going front-end solutions are introduced, particularly crossed ring antenna array with a planar structure is explored in more detail as it is less known in the community. Key performances of the candidate front-end technologies are addressed by examining the prototypes. The objective of the collaborative study is to increase technology readiness for implementation of Mid-Frequency Aperture Array in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号