首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The trap crop strategy is based on host plant discrimination by pests and their parasitoids, which may respond differently to various host plant cues, thus affecting their respective population distributions. We conducted a three-year study to compare the responses of the most damaging pest of oilseed rape (Brassica napus L.), the pollen beetle (Meligethes aeneus Fab.), and its hymenopteran parasitoids to various potential trap crops: Brassica nigra L., Raphanus sativus var. olifera Pers. and Eruca sativa Mill. with that to B. napus. We recorded their abundance, oviposition preferences and the species composition of the parasitoids.Our results show that oviposition rates of the pollen beetle and its parasitoids as well the species composition of the parasitoids varies with plant species. We discuss the potential of these plant species, especially B. nigra, to enhance the natural control of the beetle by fostering several parasitoid species. The species composition of the parasitoids on different host plants compared with on B. napus is presented for the first time. In addition to trapping pests, the trap crops could also act as parasitoid banks, enhancing natural control of the pest through providing suitable hosts for natural enemies, without increasing the population growth of the next generation of pests.  相似文献   

2.
Natural enemies of herbivores function in a multitrophic context, and their performance is directly or indirectly influenced by herbivores and their host plants. Very little is known about tritrophic interactions between host plants, pests and their parasitoids, particularly when the host plants are under any stress. Herbivores and their natural enemies’ response to plants under stress are diverse and variable. Therefore, in this study we investigated how diamondback moth, Plutella xylostella (L.), reared on water‐stressed host plants (Brassica napus L. and Sinapis alba L.) influenced the development of its larval parasitoid, Diadegma insulare (Cresson). No significant differences were observed in development of Pxylostella when reared on water‐stressed host plants. However, all results indicated that water stress had a strong effect on developmental parameters of D. insulare. Development of D. insulare was delayed when the parasitoid fed on P. xylostella, reared on stressed host plants. Egg to adult development of D. insulare was faster on non‐stressed B. napus than non‐stressed S. alba followed by stressed B. napus and S. alba. Female parasitoids were heavier on non‐stressed host plants than stressed counterparts. Furthermore, the parasitoid lived significantly longer on stressed B. napus. However, body size was not affected by water treatment. Most host plant parameters measured were significantly lower for water‐stressed than non‐stressed treatments. Results suggest that development of this important and effective P. xylostella parasitoid was influenced by both water stress and host plant species.  相似文献   

3.
Host-plant resistance can affect herbivorous insects and their natural enemies such as parasitoids and entomopathogenic fungi. This tritrophic effect acts on interspecific interactions between the two groups of natural enemies distantly related in phylogenetic terms. The intra- and extra-host aspects of the interaction between the cereal aphid parasitoid Aphidius rhopalosiphi and the entomopathogenic fungus Erynia neoaphidis developing on the grain aphid, Sitobion avenae, on resistant and susceptible wheat (Triticum aestivum) cultivars, were studied. The competitive outcome of the intra-host interaction depended on the timing of parasitoid oviposition and fungal infection and was affected by wheat resistance. In particular, survival of the parasitoid was lower on the resistant wheat cultivar than the susceptible wheat cultivar, when the competitive outcome of the interaction was favourable for either parasitoid or fungal development. Before and after this period the influence of plant resistance was not significant. Furthermore, the extra-host interaction was not affected by the wheat cultivar, although an increase in fungal infection of S. avenae was observed when parasitoids foraged in the experimental arena with sporulating aphid cadavers compared with foraging in the absence of sporulating cadavers. Our results showed that the host plant may affect interspecific interactions between parasitoids and fungi and that these interactions depended on the timing of parasitoid oviposition and fungal infection. Received: 16 March 1998 / Accepted: 24 August 1998  相似文献   

4.
1. Plant secondary metabolites can govern prey–predator interactions by altering the diet breadth of predators and sometimes provide an ecological refuge to prey. Brassicaceae plants and their specialist pests can be used as a model system for understanding the role of chemically mediated effects restricting the diet breadth of natural enemies, and consequently the occurrence of enemy‐free space for the specialist pest. 2. The objective of the present study was to test the performance of the generalist predator Episyrphus balteatus De Geer (Diptera: Syrphidae) fed on the specialist herbivore Brevicoryne brassicae L.(Homoptera: Aphididae), reared on two different brassica species: black mustard (Brassica nigra), a wild species with high levels of sinigrin; and canola (Brassica napus), a cultivated species without sinigrin. 3. The preference and performance of the predator and the performance of the prey were measured. Sinigrin was quantified by high‐performance liquid chromatography in both leaf samples and aphids reared on the two host plants. 4. The cabbage aphid performed better on canola than on black mustard. The performance of the predator on this aphid when reared on canola was clearly better than when reared on black mustard. Females had a higher overall preference for cabbage aphids reared on canola than on black mustard. 5. The ability of aphids reared on plants with high glucosinolate content to reduce the performance of their generalist predators indicates that the presence of B. nigra may provide enemy‐free space for the cabbage aphid from its predator, a concept that has useful application in the context of biological control for agricultural systems.  相似文献   

5.
Abstract Global atmospheric CO2 concentrations have risen rapidly since the Industrial Revolution and are considered as a primary factor in climate change. The effects of elevated CO2 on herbivore insects were found to be primarily through the CO2‐induced changes occurring in their host plants, which then possibly affect the intensity and frequency of pest outbreaks on crops. This paper reviews several ongoing research models using primary pests of crops (cotton bollworm, whitefly, aphids) and their natural enemies (ladybeetles, parasitoids) in China to examine insect responses to elevated CO2. It is generally indicated that elevated CO2 prolonged the development of cotton bollworm, Helicoverpa armigera, a chewing insect, by decreasing the foliar nitrogen of host plants. In contrast, the phloem‐sucking aphid and whitefly insects had species‐specific responses to elevated CO2 because of complex interactions that occur in the phloem sieve elements of plants. Some aphid species, such as cotton aphid, Aphis gossypii and wheat aphid, Sitobion avenae, were considered to represent the only feeding guild to respond positively to elevated CO2 conditions. Although whitefly, Bemisia tabaci, a major vector of Tomato yellow leaf curl virus, had neutral response to elevated CO2, the plants became less vulnerable to the virus infection under elevated CO2. The predator and parasitoid response to elevated CO2 were frequently idiosyncratic. These documents from Chinese scientists suggested that elevated CO2 initially affects the crop plant and then cascades to a higher trophic level through the food chain to encompass herbivores (pests), their natural enemies, pathogens and underground nematodes, which disrupt the natural balance observed previously in agricultural ecosystems.  相似文献   

6.
Studies of the effects of insect-resistant transgenic plants on beneficial insects have, to date, concentrated mainly on either small-scale "worst case scenario" laboratory experiments or on field trials. We present a laboratory method using large population cages that represent an intermediate experimental scale, allowing the study of ecological and behavioural interactions between transgenic plants, pests and their natural enemies under more controlled conditions than is possible in the field. Previous studies have also concentrated on natural enemies of lepidopteran and coleopteran target pests. However, natural enemies of other pests, which are not controlled by the transgenic plants, are also potentially exposed to the transgene product when feeding on hosts. The reduction in the use of insecticides on transgenic crops could lead to increasing problems with such nontarget pests, normally controlled by sprays, especially if there are any negative effects of the transgenic plant on their natural enemies. This study tested two lines of insect-resistant transgenic oilseed rape (Brassica napus) for side-effects on the hymenopteran parasitoid Diaeretiella rapae and its aphid host, Myzus persicae. One transgenic line expressed the delta-endotoxin Cry1Ac from Bacillus thuringiensis (Bt) and a second expressed the proteinase inhibitor oryzacystatin I (OC-I) from rice. These transgenic plant lines were developed to provide resistance to lepidopteran and coleopteran pests, respectively. No detrimental effects of the transgenic oilseed rape lines on the ability of the parasitoid to control aphid populations were observed. Adult parasitoid emergence and sex ratio were also not consistently altered on the transgenic oilseed rape lines compared with the wild-type lines.  相似文献   

7.
The goal of banker plant systems is to sustain a reproducing population of natural enemies within a crop that will provide long-term pest suppression. The most common banker plant system consists of cereal plants infested with Rhopalosiphum padi L. as a host for the parasitoid Aphidius colemani L. Aphidius colemani continually reproduce and emerge from the banker plants to suppress aphid pests such as Aphis gossypii Glover and Myzus persicae Sulzer. Banker plant systems have been investigated to support 19 natural enemy species targeting 11 pest species. Research has been conducted in the greenhouse and field on ornamental and food crops. Despite this there is little consensus of an optimal banker plant system for even the most frequently targeted pests. Optimizing banker plant systems requires future research on how banker plants, crop species, and alternative hosts interact to affect natural enemy preference, dispersal, and abundance. In addition, research on the logistics of creating, maintaining, and implementing banker plant systems is essential. An advantage of banker plant systems over augmentative biological control is preventative control without repeated, expensive releases of natural enemies. Further, banker plants conserve a particular natural enemy or potentially the ‘right diversity’ of natural enemies with specific alternative resources. This may be an advantage compared to conserving natural enemy diversity per se with other conservation biological control tactics. Demonstrated grower interest in banker plant systems provides an opportunity for researchers to improve biological control efficacy, economics, and implementation to reduce pesticide use and its associated risks.  相似文献   

8.
Herbivore-induced plant responses not only influence the initiating attackers, but also other herbivores feeding on the same host plant simultaneously or at a different time. Insects belonging to different feeding guilds are known to induce different responses in the host plant. Changes in a plant’s phenotype not only affect its interactions with herbivores but also with organisms higher in the food chain. Previous work has shown that feeding by a phloem-feeding aphid on a cabbage cultivar facilitates the interaction with a chewing herbivore and its endoparasitoid. Here we study genetic variation in a plant’s response to aphid feeding using plants originating from three wild Brassica oleracea populations that are known to differ in constitutive and inducible secondary chemistry. We compared the performance of two different chewing herbivore species, Plutella xylostella and M. brassicae, and their larval endoparasitoids Diadegma semiclausum and M. mediator, respectively, on plants that had been infested with aphids (Brevicoryne brassicae) for 1 week. Remarkably, early infestation with B. brassicae enhanced the performance of the specialist P. xylostella and its parasitoid D. semiclausum, but did not affect that of the generalist M. brassicae, nor its parasitoid M. mediator. Performance of the two herbivore–parasitoid interactions also varied among the cabbage populations and the effect of aphid infestation marginally differed among the three populations. Thus, the effect of aphid infestation on the performance of subsequent attackers is species specific, which may have concomitant consequences for the assembly of insect communities that are naturally associated with these plants.  相似文献   

9.
Biodiversity has both intraspecific and interspecific components, and speciation is the process through which the former is converted to the latter. Ecological factors can cause population divergence and differentiation. In this paper, we investigate the interplay between top-down effects from natural enemies and bottom-up effects from host plants in an aphid model system. Pea aphids, Acyrthosiphon pisum, are known to form host-adapted races on Trifolium and Medicago. Here, replicate clones of pea aphids collected from a broader set of five host plant genera are screened for their performance on the same set of host plants and also for their resistance to four natural enemies: the parasitoids Aphidius eadyi and Aphidius ervi, and the entomopathogenic fungi Pandora (=Erynia) neoaphidis and Zoophthora phalloides. The populations showed clear adaptation to their host plant from which they were collected, but they also performed well on Vicia. Performance on the other three plant species was poor. The aphid population collected from Lotus was significantly better at defending itself against the parasitoid A. eadyi, and there was a tendency for the clones from Trifolium to be resistant to the pathogen P. neoaphidis. These patterns highlight the importance of understanding the ecological processes influencing speciation in the context of the web of ecological adaptations within which a species is embedded.  相似文献   

10.
Banker plants, a type of open-rearing unit, are increasingly used in greenhouse crops to sustain natural enemy populations at times of low pest abundance. The most common banker plant system is a non-crop, cereal plant which supports Rhopalosiphum padi L. as an alternative host for Aphidius colemani Viereck. Although bottom-up effects of plants are known to affect natural enemies, this aspect has generally been ignored in previous investigations of banker plant efficacy. Here, we tested four cereal plant species with three varieties each to investigate host plant effects on R. padi and A. colemani. Though limited differences were observed in laboratory experiments spanning one aphid or parasitoid generation, longer greenhouse experiments spanning several generations revealed significant plant effects on both insects. R. padi performed poorly on oats (Avena sativa L.), resulting in wasps with the longest female development time, lowest emergence rates, and the lowest number of wasps produced per unit. Rye (Secale cereal L.) – intermediate in terms of aphid performance – produced a significantly male-biased wasp population with the smallest males. Conversely, R. padi placed onto either wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) performed consistently well in terms of aphid and parasitoid fitness and abundance, though neither species was obviously superior over the other. Overall, cultivars within each plant species did not significantly affect outcomes. As each plant species tested had different positive effects on aphid and parasitoid phenotypes, the potential benefits of mixing of cereal species is an area for future investigation.  相似文献   

11.
Community structures of aphids and their parasitoids were studied in fruit crop habitats of eastern Belgium in 2014 and 2015. Quantitative food webs of these insects were constructed separately for each year, and divided into subwebs on three host‐plant categories, fruit crop plants, non‐crop woody and shrub plants and non‐crop herbaceous plants. The webs were analyzed using the standard food web statistics designed for binary data. During the whole study period, 78 plant species were recorded as host plants of 71 aphid species, from which 48 parasitoid species emerged. The community structure, aphid / parasitoid species‐richness ratio and trophic link number varied between the two years, whereas the realized connectance between parasitoids and aphids was relatively constant. A new plant–aphid–parasitoid association for Europe was recorded. Dominant parasitoid species in the study sites were Ephedrus persicae, Binodoxys angelicae and Praon volucre: the first species was frequently observed on non‐crop trees and shrubs, but the other two on non‐crop herbaceous plants. The potential influence, through indirect interactions, of parasitoids on aphid communities was assessed with quantitative parasitoid‐overlap diagrams. Symmetrical links were uncommon, and abundant aphid species seemed to have large indirect effects on less abundant species. These results show that trophic indirect interactions through parasitoids may govern aphid populations in fruit crop habitats with various non‐crop plants, implying the importance for landscape management and biological control of aphid pests in fruit agroecosystems.  相似文献   

12.
Belowground communities can affect interactions between plants and aboveground insect communities. Such belowground–aboveground interactions are known to depend on the composition of belowground communities, as well as on the plant species that mediates these interactions. However, it is largely unknown whether the effect of belowground communities on aboveground plant–insect interactions also depends on genotypic variation within the plant species that mediates the interaction. To assess whether the outcome of belowground–aboveground interactions can be affected by plant genotype, we selected two white cabbage cultivars [Brassica oleracea L. var. capitata (Brassicaceae)]. From previous studies, it is known that these cultivars differ in their chemistry and belowground and aboveground multitrophic interactions. Belowground, we inoculated soils of the cultivars with either nematodes or microorganisms and included a sterilized soil as a control treatment. Aboveground, we quantified aphid [Brevicoryne brassicae (L.) (Hemiptera: Aphididae)] population development and parasitoid [Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae)] fitness parameters. The cultivar that sustained highest aphid numbers also had the best parasitoid performance. Soil treatment affected aphid population sizes: microorganisms increased aphid population growth. Soil treatments did not affect parasitoid performance. Cultivars differed in their amino acid concentration, leaf relative growth rate, and root, shoot, and phloem glucosinolate composition but showed similar responses of these traits to soil treatments. Consistent with this observation, no interactions were found between cultivar and soil treatment for aphid population growth or parasitoid performance. Overall, the aboveground community was more affected by cultivar, which was associated with glucosinolate profiles, than by soil community.  相似文献   

13.
1. Plant resistance against herbivores can act directly (e.g. by producing toxins) and indirectly (e.g. by attracting natural enemies of herbivores). If plant secondary metabolites that cause direct resistance against herbivores, such as glucosinolates, negatively influence natural enemies, this may result in a conflict between direct and indirect plant resistance. 2. Our objectives were (i) to test herbivore‐mediated effects of glucosinolates on the performance of two generalist predators, the marmalade hoverfly (Episyrphus balteatus) and the common green lacewing (Chrysoperla carnea) and (ii) to test whether intraspecific plant variation affects predator performance. 3. Predators were fed either Brevicoryne brassicae, a glucosinolate‐sequestering specialist aphid that contains aphid‐specific myrosinases, or Myzus persicae, a non‐sequestering generalist aphid that excretes glucosinolates in the honeydew, reared on four different white cabbage cultivars. Predator performance and glucosinolate concentrations and profiles in B. brassicae and host‐plant phloem were measured, a novel approach as previous studies often measured glucosinolate concentrations only in total leaf material. 4. Interestingly, the specialist aphid B. brassicae selectively sequestered glucosinolates from its host plant. The performance of predators fed this aphid species was lower than when fed M. persicae. When fed B. brassicae reared on different cultivars, differences in predator performance matched differences in glucosinolate profiles among the aphids. 5. We show that not only the prey species, but also the plant cultivar can have an effect on the performance of predators. Our results suggest that in the tritrophic system tested, there might be a conflict between direct and indirect plant resistance.  相似文献   

14.
The impact of parasitoids on pests varies between conventional and low‐intensity agricultural systems. Although the impacts on parasitoid natural enemies of many practices within these agricultural systems are well understood, the role of fertilisers has been less well studied. The effects of organic‐based and conventional fertilisers on Hordeum vulgare L. (Poaceae), the aphid Metopolophium dirhodum Walker (Hemiptera: Aphididae), and its parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) was investigated using cage release experiments and measures of aphid and parasitoid fitness were taken. Barley tiller number and aphid weight were increased by fertilisers, particularly under conventional treatments. Adult parasitoid size correlated positively with that of the host, M. dirhodum, whereas percentage parasitism was not affected by fertiliser treatment or host size. The results suggest that the increased parasitoid impact observed in some low‐intensity or organic systems is not a direct result of fertiliser treatment. Our results indicate that fertiliser treatments that improve cereal‐aphid fitness will improve parasitoid fitness as measured by parasitoid size but may not influence percentage parasitism.  相似文献   

15.
Natural enemies are important mortality factors for herbivores and thus may influence herbivore population dynamics. In response to natural enemy pressure, herbivores can alter life history decisions, such as oviposition behavior, so that offspring are protected from natural enemies. One such strategy is to deposit eggs into structures where vulnerability to natural enemies is reduced or eliminated, i.e., use enemy-free space. The plant bug, Lygus lineolaris (Palisot de Beauvois), is native to North America and has a broad host range (>350 plant species), including crops. This bug’s eggs are attacked by a native parasitoid, Anaphes iole Girault, and parasitism levels vary greatly among host plant species. Weed hosts are critical to contemporary L. lineolaris life history because they serve as an ecological bridge from one crop growing season to the next. We investigated the egg distribution pattern of L. lineolaris on 11 host plant species (nine weeds and two crops), and parasitism by A. iole, to determine whether oviposition choices by L. lineolaris females protect their eggs from parasitism and to demonstrate the mechanism of this protection. Our results indicate that the reproductive structures of Erigeron annuus, as well as those of several other host plant species, provide a refuge from parasitism for most L. lineolaris eggs. This refuge is due to the deposition of host eggs deeper in plant tissue than the length of the ovipositor of A. iole. Also, overall parasitism levels were greater on non-Asteraceae host plant species compared with host plant species belonging to Asteraceae. Oviposition site choice by female bugs appears to be a selective strategy to take advantage of enemy-free space.  相似文献   

16.
Field surveys were conducted during 2005 to 2007 to assess the species diversity of stem borer parasitoids in cultivated and natural habitats in four agroecological zones in Kenya. In total, 33 parasitoid species were recovered, of which 18 parasitized six stem borer species feeding on cereal crops, while 27 parasitized 21 stem borer species feeding on 19 wild host plant species. The most common parasitoids in cultivated habitats were Cotesia flavipes Cameron, Cotesia sesamiae (Cameron), Pediobius furvus Gahan and the tachinid Siphona sp., whereas in natural habitats, Siphona sp. was the most common. The majority of parasitoids were stenophagous species; only five species –Cotesia sp., Enicospilus ruscus Gauld and Mitchell, Pristomerus nr. bullis, Sturmiopsis parasitica (Curran) and Syzeuctus ruberrimus Benoit – were monophagous. In both cultivated and natural habitats, parasitoid species diversity was highest on the most dominant stem borers Busseola spp. and Chilo spp. On cereal crops, parasitoid diversity was highest on maize and among wild host plants, it was highest on Setaria spp. The ingress‐and‐sting attack method was the most common strategy used by parasitoids in both habitats. In all agroecological zones, parasitoid species diversity was significantly higher in natural than in cultivated habitats. Furthermore, the majority of parasitoid species were common to both cultivated and natural habitats. It was concluded that natural habitats surrounding cereal crops serve as refugia for sustaining the diversity of stem borer parasitoids from adjacent cereal fields.  相似文献   

17.
1 The cultivated tomato, Lycopersicon esculentum, is an economically important worldwide crop. Current pest management techniques rely heavily on pesticides but trichome‐based host‐plant resistance may reduce pesticide use. 2 A review of the literature is provided on trichomes of wild Lycopersicon species and the effects of trichome‐based host‐plant resistance on arthropods. Solvents have been used to remove glandular trichome exudates and the resulting dimminution of their effects quantified. Correlational approaches to assess the relationship between the different trichome types and effects on pests have also been used. 3 Most studies have focused on Lepidoptera and Hemiptera, although some work has included Coleoptera, Diptera and Acarina, and both antibiotic and antixenotic effects have been demonstrated. 4 Natural enemies are a cornerstone of international pest management and this review discusses how the compatibility of this approach with trichome‐based host‐plant resistance is uncertain because of the reported negative effects of trichomes on one dipteran, one hemipteran and several Hymenoptera. 5 For trichome‐based host‐plant resistance to be utilized as a pest management tool, trichomes of wild species need to be introgressed into the cultivated tomato. Hybrids between the cultivated tomato and the wild species Lycopersicon hirsutum f. glabratum, Lycopersicon pennellii and Lycopersicon cheesmanii f. minor have been produced and useful levels of resistance to Acarina, Diptera and Hemiptera pests have been exhibited, although these effects may be tempered by effects on natural enemies. 6 This review proposes that studies on genetic links between fruit quality and resistance, field studies to determine the compatibility of natural enemies and trichome‐based host‐plant resistance, and a strong focus on L. cheesmanii f. minor, are all priorities for further research that will help realize the potential of this natural defence mechanism in pest management.  相似文献   

18.
1 The cultivated tomato, Lycopersicon esculentum, is an economically important worldwide crop. Current pest management techniques rely heavily on pesticides but trichome‐based host‐plant resistance may reduce pesticide use. 2 A review of the literature is provided on trichomes of wild Lycopersicon species and the effects of trichome‐based host‐plant resistance on arthropods. Solvents have been used to remove glandular trichome exudates and the resulting dimminution of their effects quantified. Correlational approaches to assess the relationship between the different trichome types and effects on pests have also been used. 3 Most studies have focused on Lepidoptera and Hemiptera, although some work has included Coleoptera, Diptera and Acarina, and both antibiotic and antixenotic effects have been demonstrated. 4 Natural enemies are a cornerstone of international pest management and this review discusses how the compatibility of this approach with trichome‐based host‐plant resistance is uncertain because of the reported negative effects of trichomes on one dipteran, one hemipteran and several Hymenoptera. 5 For trichome‐based host‐plant resistance to be utilized as a pest management tool, trichomes of wild species need to be introgressed into the cultivated tomato. Hybrids between the cultivated tomato and the wild species Lycopersicon hirsutum f. glabratum, Lycopersicon pennellii and Lycopersicon cheesmanii f. minor have been produced and useful levels of resistance to Acarina, Diptera and Hemiptera pests have been exhibited, although these effects may be tempered by effects on natural enemies. 6 This review proposes that studies on genetic links between fruit quality and resistance, field studies to determine the compatibility of natural enemies and trichome‐based host‐plant resistance, and a strong focus on L. cheesmanii f. minor, are all priorities for further research that will help realize the potential of this natural defence mechanism in pest management.  相似文献   

19.
Plants are exposed to microbial pathogens as well as herbivorous insects and their natural enemies. Here, we examined the effects of inoculation of potato plants, Solanum tuberosum L. (Solanaceae), with the late blight pathogen Phytophthora infestans (Mont.) de Bary (Peronosporales: Pythiaceae) on an aphid species commonly infesting potato crops and one of the aphid's major parasitoids. We observed the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and its natural enemy, the biocontrol agent Aphidius colemani Viereck (Hymenoptera: Braconidae), on potato either inoculated with water or P. infestans. Population growth of the aphid, parasitism rate of its natural enemy, and other insect life‐history traits were compared on several potato genotypes, the susceptible cultivar Désirée and genetically modified (GM) isogenic lines carrying genes conferring resistance to P. infestans. Effects of P. infestans inoculation on the intrinsic rate of aphid population increase and the performance of the parasitoid were only found on the susceptible cultivar. Insect traits were similar when comparing inoculated with non‐inoculated resistant GM genotypes. We also tested how GM‐plant characteristics such as location of gene insertion and number of R genes could influence non‐target insects by comparing insect performance among GM events. Different transformation events leading to different positions of R‐gene insertion in the genome influenced aphids either with or without P. infestans infection, whereas effects of position of R‐gene insertion on the parasitoid A. colemani were evident only in the presence of inoculation with P. infestans. We conclude that it is important to study different transformation events before continuing with further stages of risk assessment of this GM crop. This provides important information on the effects of plant resistance to a phytopathogen on non‐target insects at various trophic levels.  相似文献   

20.
Abstract 1. Variation in plant chemistry does not only mediate interactions between plants and herbivores but also those between herbivores and their natural enemies, and plants and natural enemies. 2. Endophytic fungi complete their whole life cycle within the host plant’s tissue and are associated with a large diversity of plant species. Endophytes of the genus Neotyphodium alter the chemistry of the host plant by producing herbivore toxic alkaloids. 3. Here we asked whether the endophyte‐tolerant aphid species Metopolophium festucae could be defended against its parasitoid Aphidius ervi when feeding on endophyte‐infected plants. In a laboratory experiment, we compared life‐history traits of A. ervi when exposed to hosts on endophyte‐infected or endophyte‐free Lolium perenne. 4. The presence of endophytes significantly increased larval and pupal development times, but did not affect the mortality of immature parasitoids or the longevity of the adults. Although the number of parasitoid mummies tended to be reduced on endophyte‐infected plants, the number of emerging parasitoids did not differ significantly between the two treatments. 5. This shows that the metabolism of individual aphids feeding on infected plants may be changed and help in the defence against parasitoids. An increase in parasitoid development time should ultimately reduce the population growth of A. ervi. Therefore, endophyte presence may represent an advantage for endophyte‐tolerant aphid species through extended parasitoid development and its effect on parasitoid population dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号