首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用磁控溅射法在AZ31镁合金表面沉积了SiNx薄膜.用场发射扫描电镜、X射线衍射、X光电子能谱等研究分析了薄膜的晶体结构、表面形貌和化学成分.实验结果表明,所制备的SiNx薄膜为非晶态的富N膜;SiNx薄膜可显著降低AZ31在3.5%的NaCl溶液中的腐蚀电流密度,膜厚为1.5靘时,在阳极极化区出现钝化现象.  相似文献   

2.
曹慧  张发  郭玉利 《材料保护》2021,54(4):118-122
针对镁合金不抗蚀、不耐磨2大问题,采用直流磁控溅射的方法,通过对基体施加偏压调控,在AZ31镁合金表面制备了TiAlN薄膜.借助XRD和SEM等方法研究了薄膜的微观结构,通过电化学工作站和销盘式摩擦磨损试验机评估了薄膜的耐腐蚀和耐磨性能.结果 表明:施加偏压后的镀膜基体结构发生很大变化,薄膜由岛状生长模式转变为层状生长...  相似文献   

3.
射频磁控溅射(Ti,Al)N薄膜性能的研究   总被引:5,自引:4,他引:5  
采用射频磁控溅射,用Al靶和Ti靶同时溅射沉积(Ti,Al)N薄膜。研究表明:不同Al靶功率沉积的薄膜中始终存在面心立方结构(B1型),当Al靶功率大于250W薄膜中面心立方结构(B1型)和六方结构(B4型)共存。随Al成分的增加,B1型结构晶格常数减小,薄膜择优取向由B1型(111)向B4型(002)转变。薄膜表面随Al靶功率增加分别呈岛状、纤维状和柱状增长。(Ti,Al)N薄膜的硬度随Al靶功率的增加呈上升趋势。等离子体发射光谱分析显示,在相同工艺条件下Al靶比Ti靶先进入非金属态溅射模式,导致在相同功率下Al溅射速率低于Ti溅射速率。  相似文献   

4.
AZ31镁合金基材非平衡磁控溅射镀膜工艺研究   总被引:1,自引:0,他引:1  
采用中频孪生靶非平衡磁控溅射技术在AZ31镁合金基底上制备出氮化硅薄膜。利用傅里叶变换红外光谱仪、电子探针、X射线衍射仪等研究了氮气流量比率对氮化硅薄膜的成分、微观结构的影响。通过对薄膜力学性能和抗腐蚀性能的检测分析了氮化硅薄膜对AZ31镁合金基底表面改性的作用。结果表明:中频孪生非平衡磁控溅射技术制备的薄膜为非晶态富N氮化硅。随着氮气流量比率的增加,薄膜的沉积速率降低,Si含量减少。在AZ31镁合金基底上制备氮化硅薄膜有效提高了基底的力学性能和抗腐蚀性能,显微硬度得到显著提高,腐蚀电流密度降低了3个数量级,并且薄膜与基底之间的结合力良好。  相似文献   

5.
AZ31镁合金表面气相沉积不锈钢薄膜的实验研究   总被引:3,自引:0,他引:3  
利用真空蒸发镀膜技术在镁合金表面沉积不锈钢薄膜是提高镁合金防腐性能的新尝试.本研究利用该技术在AZ31上成功制备了不锈钢薄膜.通过在5%NaCl溶液中的浸入实验和极化实验考察了腐蚀性能,发现镀膜后耐蚀性显著降低.另外,镀膜后的显微硬度也未有明显提高.利用AFM,SEM,EDX等分析手段对薄膜进行了观察和检测,发现耐蚀性变差的原因主要是薄膜表面存在贯穿性的微米级孔洞和Cr元素分布不均匀造成的.  相似文献   

6.
采用直流反应磁控溅射工艺,在载波片和Al基材上制备出金黄色的(Ti,Zr)N薄膜.(Ti,Zr)N薄膜具有比TiN薄膜更高的硬度和更强的耐腐蚀性能.用XRD衍射方法和扫描隧道显微镜对薄膜的晶体结构、微观表面形貌和电子结构进行了测试分析.XRD结果表明,(Ti,Zr)N薄膜为多晶态,存在TiN和ZrN两种分离相;从表面形貌可知,薄膜表面平整,晶粒排列致密且无连接松散的大颗粒;STS谱表明,Zr掺杂后,禁带宽度仍为1.64eV,但在禁带内增加了新能级,新能级的宽度分别为0.33eV和0.42eV,这也正是掺杂Zr后,薄膜仍呈现金黄色的主要原因.  相似文献   

7.
为了在镁合金表面获得高效的复合防护涂层,采用高固体组分增强有机涂层的方法,对A231镁合金阳极氧化处理后电泳沉积聚氨酯,然后分别加压包覆刚玉粉、铝粉、锌粉,获得了3种高固体组分的聚氨酯复合涂层.采用SEM、极化曲线、交流阻抗和盐雾试验对复合涂层的结构及性能进行了研究.结果表明:3种粉体可牢固镶嵌于聚氨酯中,形成与基体结...  相似文献   

8.
采用冷喷涂技术在 AZ80 镁合金表面制备一层纯铝涂层,然后通过微弧氧化技术在纯铝涂层表面成功制备纯铝/氧化铝复合涂层.使用扫描电镜(SEM)、能谱仪(EDS)、X 射线衍射仪(XRD)分析涂层的表面和截面形貌、成分、相结构,并利用动电位扫描技术和电化学阻抗谱研究涂层在 3.5%NaCl(质量分数)溶液中浸泡不同时间(30 min和 7 天)的腐蚀行为.结果表明:浸泡 30 min后,纯铝涂层和纯铝/氧化铝复合涂层的腐蚀电流密度分别为 3.7×10-6 ,8.0×10-7 A·cm-2 ;浸泡 7 天后,腐蚀电流密度分别为 9.0×10-6 ,1.8×10-6 A·cm-2 ,纯铝/氧化铝复合涂层和冷喷涂铝涂层均能有效延缓镁合金基体腐蚀.其中,微弧氧化复合涂层的耐蚀性约为冷喷涂纯铝涂层的 5 倍,耐蚀性的进一步提高归因于微弧氧化陶瓷层优异的物理屏障作用.  相似文献   

9.
磁控溅射工艺参数对Pb(Zr,Ti)O3薄膜织构的影响   总被引:1,自引:1,他引:0  
利用RF磁控溅射法制备了Pb(Zr,Ti)O3(PZT)铁电薄膜,利用X射线衍射(XRD)法研究了薄膜的相组成及溅射工艺参数对薄膜织构的影响.结果表明,在小靶基距时,过高溅射功率不利于获得纯钙钛矿相的PZT铁电薄膜.溅射功率及溅射气压影响PZT薄膜的织构及其织构散漫度,提高溅射气压及溅射功率,(111)织构漫散度随之提高.在靶基距为80mm时,选择150w、0.7Pa的溅射工艺可获得具有最佳(100)织构的PZT薄膜.  相似文献   

10.
研究了在AZ31镁合金表面依次进行浸锌、化学镀镍、电镀铜、电弧离子镀Cr/CaN的复合镀膜工艺.结果表明,在此复合镀工艺条件下,可以在AZ31镁合金表面形成致密度高、结合强度好、耐蚀性好且硬度高的复合合金镀层.AZ31镁合金镀膜后的显微硬度形成一个梯度,由71 HK提高到2225 HK;耐蚀性明显提高,在3.5%NaCl溶液中腐蚀电位从-1481 mV提高到-382 mV.  相似文献   

11.
采用射频磁控溅射法在AZ31镁合金表面沉积TiCN薄膜,研究了制备工艺参数对TiCN薄膜耐腐蚀性能的影响。结果表明,在Ti靶功率50W,C靶功率50W,N2流量20sccm,溅射时间4.5h条件下,镀TiCN薄膜的镁合金基体具有最佳的耐蚀性,其在3.5%(质量分数)NaCl溶液中的腐蚀电流密度为1.664×10-6 A/cm2,比同等条件下纯镁合金基体的腐蚀电流密度(1.785×10-5 A/cm2)下降了1个数量级。  相似文献   

12.
为了提高AM60镁合金的耐腐蚀性能,采用机械涂覆的方法在合金表面制备Cr涂层。通过XRD、视频显微镜、SEM、显微硬度分析等方法对表面涂层的物相、截面形貌、涂层的显微硬度等进行表征,利用电化学工作站对涂覆Cr前后的AM60镁合金的耐蚀性能进行分析。结果表明:AM60镁合金表面成功涂覆了Cr涂层,所制备涂层与基体结合致密,涂覆效果较好;同时,涂层的显微硬度高达到1 132 HV,较基体提高了1.96倍;球料比为10∶1和20∶1时,球磨时间为20 h和15 h时所制备的膜层耐腐蚀性能较好,和基体相比,所制备样品的自腐蚀电流密度均降低了3个数量级,自腐蚀电位均大幅提高,阻抗谱半径也均增加,在模拟海水中的耐腐蚀性能都得到明显改善。因此,在该实验条件下,Cr涂层的最佳制备工艺为:球料比为10∶1,球磨时间为20 h。  相似文献   

13.
采用不同浓度的NaOH溶液对AZ31镁合金微弧氧化(Micro-arc oxidation, MAO)陶瓷层进行水热处理, 研究了水热溶液浓度对MAO陶瓷层组织结构及耐蚀性能的影响, 探讨了水热成膜及膜层的腐蚀机理。研究结果表明:水热处理过程中MAO陶瓷层表面的MgO部分溶解, 释放出的Mg 2+与水热溶液中的OH -结合形成Mg(OH)2纳米片沉淀在陶瓷层表面及孔洞内。随着水热溶液中NaOH浓度的增加, 水热处理过程中形成的Mg(OH)2将MAO陶瓷层表面的孔洞及裂纹等固有缺陷闭合, 提高了膜层的致密性。电化学实验结果表明, MAO及水热复合处理所制备的Mg(OH)2/MAO复合膜层比单一MAO陶瓷层具有更好的耐蚀性, 而且随着NaOH浓度的提高, Mg(OH)2/MAO复合膜层的耐蚀性增强; 浸泡实验结果表明Mg(OH)2/MAO复合膜层能为镁合金基体提供长久的腐蚀防护保护能力。  相似文献   

14.
为了提高镁合金的耐腐蚀性能,在MB31镁合金表面进行不同浓度硫酸亚铁化学还原沉积铁后,再进行不同温度的溶剂热处理。采用现代表面分析技术对不同硫酸亚铁浓度制备的铁膜及不同温度溶剂热处理后的铁膜进行了表征,找出了沉积和热处理最优方案。结果表明:对MB31镁合金表面化学还原沉积铁及适当温度溶剂热处理可以得到致密均匀的铁膜,使之耐腐蚀性能显著提升,最佳硫酸亚铁浓度为75 g/L,最佳溶剂处理温度为130℃。  相似文献   

15.
添加纳米颗粒可改善金属表面膜层的性能,但目前添加纳米颗粒改善镁合金表面磷化膜性能的报道较少。通过向磷化处理液中添加纳米二氧化铈(nano-CeO_2)颗粒在镁合金表面制备了一层纳米二氧化铈/磷酸盐复合转化膜,采用X射线衍射仪(XRD)、X射线光电子能谱(XPS)、电化学阻抗谱(EIS)和极化曲线等手段研究了添加nano-CeO_2颗粒对膜层成分和防护性能的影响,讨论了nano-CeO_2颗粒的作用机制。结果表明:复合转化膜的相成分为Zn_3(PO_4)_2·4H_2O、Zn_2Mg(PO_4)_2和CeO_2,在单组分磷化膜成分的基础上多出了CeO_2相。在硼酸缓冲溶液中,单组分磷化膜的膜层电阻(R_c)和低频阻抗值(R_(0.01 Hz))分别为561.74 kΩ·cm~2和938.11 kΩ·cm~2,而复合转化膜的R_c和R_(0.01 Hz)分别为2 428.98 kΩ·cm~2和3 985.61 kΩ·cm~2;与此同时,覆盖复合转化膜镁合金的腐蚀电流密度为4.05×10~(-7)A/cm~2,而覆盖单组分磷化膜镁合金的为8.38×10~(-6)A/cm~2,R_c和R_(0.01 Hz)的增大以及J_(corr)的减小说明复合转化膜的防护作用明显优于单组分磷化膜的防护作用。nano-CeO_2颗粒的作用机制主要归因于两个方面:第一,nano-CeO_2颗粒在处理液中的添加有利于磷酸盐晶核的形成;第二,nano-CeO_2颗粒作为一种不溶性固体粒子在膜层中的存在可以强化膜层的物理屏蔽效应。  相似文献   

16.
镁合金的耐蚀性差,严重限制了其在生物材料领域的应用。在镁合金表面采用化学还原法和溶剂热法复合制备了铁氧化涂层,利用扫描电镜(SEM)、X射线衍射(XRD)和能谱(EDS)等对样品的结构与组成进行表征,分别采用Tafel测试和磷灰石诱导试验评价了样品的耐蚀性和生物相容性。结果表明:涂层的主要组分为Fe3O4、Fe2O3和FeO;随着乙醇浓度降低和溶剂热时间延长,涂层粗糙度先降低后升高;Tafel测试表明,随着乙醇浓度的增加,涂层的耐蚀性先增高后降低;在乙醇浓度为90%,溶剂热时间4 h时获得的涂层表面无脱落现象,微裂缝数量最小,具有最高的耐腐蚀性能,极化电阻达51 779.2Ω,并具有良好的生物诱导活性。  相似文献   

17.
AZ系镁合金在工业领域具有广阔的应用前景,但其耐腐蚀性能和耐磨损性能差阻碍了其发展。绿色环保的磁控溅射表面涂覆技术是防止镁合金腐蚀和磨损的方法之一。简要地介绍了磁控溅射镀膜技术的原理及特点,评述了当今磁控溅射的重要发展。结合近几年的实验研究,回顾和总结了溅射沉积薄膜技术的发展历程和应用现状,重点分析了溅射工艺参数对薄膜耐腐蚀和耐磨损性能的影响。最后,展望了磁控溅射技术未来的发展趋势。  相似文献   

18.
AZ91D镁合金表面钙系磷酸盐膜层的制备及其耐蚀性   总被引:1,自引:0,他引:1  
为了降低AZ91D镁合金活泼的化学性质,使其成为耐蚀性更好的医用金属材料,在不同pH值及反应温度等条件下对AZ91D镁合金进行钝化,观察了不同条件下制备的膜层的表面形貌、元素构成,并测试了其电化学性质,研究了磷化的pH值和温度对磷化膜性能的影响。结果表明:磷化液的温度及pH值对磷化膜性能有重要影响,当pH值为2.8,温度为40℃时,制备的磷化膜为针状鳞片、尺寸均一,膜层覆盖最为致密细腻,表面膜层中主要生成了CaHPO_4·2H_2O化合物,即DCPD,还有少量Ca_3(PO_4)_2,膜层在AZ91D表面形成了稳定的钝化层,有效降低了其化学活泼性,大幅提高了其耐蚀性。  相似文献   

19.
AZ31镁合金酸性化学镀Ni-Co-P层的耐腐蚀性能   总被引:1,自引:0,他引:1  
为了提高镁合金的耐蚀性,以酸性化学镀的方法在AZ31镁合金表面制备了Ni-Co-P镀层。分别用XRD,SEM和EDS对镀层的结构、表面形貌和成分进行了分析,并用点滴试验和电化学方法测试了镀层的耐蚀性。结果表明:酸性化学镀Ni-Co-P层为非晶态胞状结构,镀层中P含量可高达9.41%,远高于碱性镀层;AZ31镁合金镀覆Ni-Co-P合金层后腐蚀电流比基体降低3个数量级,其耐蚀性能显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号