首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The coordination compounds of group 12 halides with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen), 2[CdF2(bpy)2]·7H2O (1), [ZnI(bpy)2]+·I3? (2), [CdI2(bpy)2] (3), [Cd(SiF6)H2O(phen)2]·[Cd(H2O)2(phen)2]2+·F·0.5(SiF6)2–·9H2O (4), [Hg(phen)3]2+·(SiF6)2–·5H2O (5), [ZnBr2(phen)2] (6), 6[Zn(phen)3]2+·12Br·26H2O (7) and [ZnI(phen)2]+·I (8), have been synthesized and characterized by X-ray crystallography, IR spectroscopy, elemental and thermal analysis. Structural investigations revealed that metal?:?ligand stoichiometry in the inner coordination sphere is 1?:?2 or 1?:?3. A diversity of intra- and intermolecular interactions exists in structures of 18, including the rare halogen?halogen and halogen?π interactions. The thermal and spectroscopic properties were correlated with the molecular structures of 18. Structural review of all currently known coordination compounds of group 12 halides with bpy and phen is presented.  相似文献   

2.
《Solid State Sciences》2012,14(7):952-963
Recently we established the existence of an entire class of salts of amino acids with hexafluorosilicate anions. Three types of salts with singly charged cations are formed: 2A+·SiF62−, A+·(A⋯A+)·SiF62−, 2(A⋯A+)·SiF62−, where A and A+ are amino acids in zwitterionic and singly charged state and (A⋯A+) is dimeric cation with short hydrogen bond. In present work we investigated the system sarcosine + H2SiF6 + H2O. Salts of all three mentioned types are formed in this system: 2Sar·H2SiF6 (2Sar+·SiF62−) (I), 3Sar·H2SiF6·2H2O (Sar+·(Sar⋯Sar+)·SiF62−·2H2O) (II), 4Sar·H2SiF6 (2(Sar⋯Sar+)·SiF62−) (III). The crystal and molecular structures at room temperature as well as thermal expansion of all three crystals are determined. A phase transition near 180 K was found in (II) and the structure below phase transition point (at 150 K) is determined. In addition to (I) a hydrated sample (Ia) is identified by the infrared spectrum. Infrared and Raman spectra of (I, II, III) are discussed on the basis of their structures.  相似文献   

3.
Concerning Sodium Arsenites in the Three Component System Na2O? As2O3? H2O at 6°C Four phases Na2(H2As4O8) 1c , NaAsO2 · 4 H2O 2c , Na2(HAsO3) · 5 H2O 3c , and Na5(HAsO3)(AsO3) · 12 H2O 4c have been identified in the system Na2O? As2O3? H2O at 6°C and characterized by X-ray structural analysis. Polymetaarsenite anions, adopt in 1c and 2c , respectively, octet or doublet single chains.  相似文献   

4.
Polynuclear Cobalt Complexes. IV. Preparation and Structure of [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O The binuclear peroxo complex [(papd)Co(O2)Co(papd)](S2O6)(NO3)2 · 4 H2O I crystallizes in the triclinic space group P1 . Lattice constants are a = 9.405(4), b = 9.270(4), c = 12.218(6)Å, α = 89.58(5), β = 99.08(6), γ = 114.79(5)° for Z = 1. The binuclear cation has a center of symmetry, so the Co? O? O? Co unit is planar. Three chelate rings have a common plane, the ligand configuration is δ.  相似文献   

5.
Hydrates of Weak and Strong Bases. XI. The Crystal Structures of NaOH · 3,5H2O and NaOH · 7 H2O. A Refinement The crystal structures of the hydrates NaOH · 3,5 H2O (space group P21/c, Z = 8 formula units per unit cell; lattice parameters: a = 6.481, b = 12.460, c = 11.681 Å, β = 104.12° at ?100°C) and NaOH · 7 H2O (P21/c, Z = 4; a = 7.344, b = 16.356, c = 6.897 Å, β = 92.91° at ?150°C) have been redetermined using MoKα diffractometer data. The obtained refinement of the structures, including the localization also of the H atoms for the first time, has led to new findings with respect to the H bonds. In particular, in both hydrates there is one such interaction of the rare type OH? …? OH2, from an OH? ion to an H2O molecule, i. e. with the OH? ion as the proton donor.  相似文献   

6.
The solubility of components in the system Mg(ClO3)2-2NH2C2H4OH · H3C6H5O7-H2O was studied from the complete freezing temperature ?59.4°C to 20.0°C. A polythermal solubility diagram was constructed, in which the crystallization fields were determined for ice, Mg(ClO3)2 · 16H2O, Mg(ClO3)2 · 12H2O, Mg(ClO3)2 · 6H2O, 2NH2C2H4OH · H3C6H5O7 · H2O, 2NH2C2H4OH · H3C6H5O7, and two new compounds, [(HOC(CH2COOH)2COO)2Mg · 2H2O] and [HOC(CH2COO)2MgCOOH · 2H2O], which were identified by chemical and physicochemical analysis methods.  相似文献   

7.
Condensed Phosphates of Melamine The title compounds with the formulae (C3H6N6)n · Hn+2PnO3n+1 (linear phosphates, n = 2; 3) and (C3H6N6 · HOP3)m (cyclic phosphates, m = 3; 4; 6; 8 and high polymeric phosphate) are obtained as crystalline hydrates by interaction of the corresponding sodium phosphates with stoichiometric amounts of melamine hydrochloride and hydrochloric acid or melamine hydrochloride in aqueous solution. With the exception of (C3H6N6 · HPO3)4 · 6H2O ( I ) these hydrates decompose at ~100°C forming a mixture of mono and diphosphate which transforms at ~200°C into pure melamine diphosphate and at ~250°C into melamine polyphosphate. In contrast to this I froms at ~100°C the anhydrous melamine tetrametaphosphate which converts at ~150°C into melamine polyphosphate. Melamine diphosphate and polyphosphate are also formed on heating melamine monophosphate C3H6N6 · H3PO4.  相似文献   

8.
The solubility of SiO2 in aqueous solutions of hexafluorosilicates at various acid concentrations has been measured. The results are interpreted in terms of a series of mononuclear siliconfluorine complexes (SiF6, SiF5, SiF4). The equilibrium constants β x6 (x=4 and 5) of the reactionxSiF6+(6?x)SiO2+4(6?x)H=6SiF x +2(6?x)H2O in 4M-LiClO4 have been determined (β 46 =7·10?8, β 56 =9·10?2). The influence of the ionic medium and the likely structures of the complexes are discussed. No conclusion can be drawn as to number and kind of other ligands than F (OH, OH2).  相似文献   

9.
Three Keggin-type polyoxometalates functionalized by amino acids, (C5H13N2O2)2(H3O)PMo12O40·8H2O 1, (C5H14N2O2)2SiMo12O40·12H2O 2 and (C5H14N2O2)2GeMo12O40·12H2O 3, were synthesized and characterized by elemental analysis, IR and 1H?NMR spectra and single-crystal X-ray diffraction. The X-ray crystallographic study showed that the structures of the three compounds involved N–H···O and O–H···O hydrogen bonds among the protonated ornithine cations, water molecules and the heteropolyanion cluster, and thus represent a model interaction between polyoxometalates and proteins. These complexes display inhibitory actions to the human cancer cells Hela and PC-3?m in vitro.  相似文献   

10.
Single-crystalline materials of Li[H2N3C3O3] · 1.75 H2O and Mg[H2N3C3O3]2 · 8 H2O were obtained by dissolving stoichiometric amounts of the respective carbonates with cyanuric acid in boiling water followed by gentle evaporation of excess water after cooling to room temperature. Even though both of these compounds crystallize in the triclinic space group P1 according to X-ray structure analyses of their colorless and transparent single crystals, they adopt two new different structure types. Li[H2N3C3O3] · 1.75 H2O exhibits the unit-cell parameters a = 884.71(6) pm, b = 905.12(7) pm, c = 964.38(7) pm, α = 67.847(2)°, β = 62.904(2)° and γ = 68.565(2)° (Z = 4), whereas the lattice parameters for Mg[H2N3C3O3]2 · 8 H2O are a = 691.95(5) pm, b = 1055.06(8) pm, c = 1183.87(9) pm, α = 85.652(2)°, β = 83.439(2)° and γ = 79.814(2)° (Z = 2). In both cases, the singly deprotonated isocyanuric acid forms monovalent anions consisting of cyclic [H2N3C3O3] units, which are arranged in ribbons typical for most hitherto known monobasic isocyanurate hydrates. The structures are governed by the oxophilic strength of the respective cation which means that they fulfil their oxophilic coordination requirements either solely with water molecules ([Mg(OH2)6]2+ for Mg2+) or with crystal water and one or two direct coordinative contacts to carbonyl oxygen atoms (O(cy)) of [H2N3C3O3] anions ([(Li(OH2)2–3(O(cy)1–2]+ for Li+). In both structures occur dominant hydrogen bonds N–H ··· O within the anionic [H2N3C3O3] ribbons as well as hydrogen bonds O–H ··· O between these ribbons and the hydrated Li+ and Mg2+ cations.  相似文献   

11.
Most salt hydrates, especially those proposed for thermal-energy-storage applications, melt incongruently. In static systems, this property often leads to differences between the enthalpy of fusion and enthalpy of solidification. By means of differential scanning calorimetry (DSC), these differences have been determined for several salt hydrates. For Na2SO4 · 10 H2O, the enthalpy of solidification at or near the peritectic temperature is never more than 60% of the enthalpy of fusion; further cooling leads to a second phase transition at a temperature corresponding to eutectic melting of mixtures of ice and this hydrate. This asymmetrical melting and freezing behavior of Na2SO4 · 10 H2O decreases its potential as an energy-storing medium and also limits its usefulness for temperature calibration of DSC instruments. Sodium pyrophosphate decahydrate, Na4P2O7 · 10 H2O, although in some ways a higher temperature analog of Na2SO4 · 10 H2O, exhibited a smaller discrepancy between the enthalpies of fusion and of solidification; its relatively high transition temperature permits a more rapid solidification reaction than is the case for Na2SO4 · 10 H2O. For Mg(NO3)2 · 6 H2O, a congruently melting compound, the magnitude of ΔH of crystallization equalled ΔH of fusion, even when supercooling occurred; a solid-state transition at 73°C, with ΔH = 2.9 cal g?1, was detected for this hydrate. MgCl2 · 6 H2O, which melts almost congruently, exhibited no disparity between ΔH of crystallization and ΔH of fusion. CuSO4 · 5 H2O and Na2B4O7 · 10 H2O exhibited marked disparities. Na2B4O7 · 10 H2O formed metastable Na2B4O7sd 5 H2O at the phase transition; this was derived from the transition temperature and verified by relating the observed ΔH of transition to heats of hydration. Peritectic solidification of hydrates can be viewed as a dual process: crystallization from the liquid solution and reaction of the lower hydrate (or anhydrate) with the solution; where ΔH of solidification appears to be less in magnitude than the ΔH of fusion, the difference can be attributed to slower reaction rate between solution and the lower hydrate. New or previously unreported values for ΔH of fusion obtained in this study were, in cal g?1: Mg(NO3)2 · 6 H2O, 36; Na4P2O7 · 10 H2O, 59; CuSO4 · 5 H2O, 32; Na2B4O7 · 10 H2O, 33.  相似文献   

12.
A phase study of the Cs2OTiO2 system in the composition range 75–100 mole% TiO2 and the temperature range 850–1200°C revealed the existence of two new cesium titanates, with compositions Cs2Ti5O11 and Cs2Ti6O13. The former compound undergoes a reversible hydration reaction below 200°C to form Cs2Ti5O11 · (1 + x)H2O, 0.5 < x < 1. The structures of the three phases have been determined. They are based on corrugated layers of edge-shared octahedra, with cesium ions (and H2O) packing between the layers. In Cs2Ti6O13, the layers are continuous in two dimensions, whereas in Cs2Ti5O11 and Cs2Ti5O11 · (1 + x)H2O, the layers are periodically stepped to give 5-octahedra wide, corner-linked ribbons.  相似文献   

13.
The phase diagram of the binary system tetramethylammonium bromide-water was studied by the differential thermal analysis. In the stable region two phases, ice and the salt itself, were detected, and in the metastable region, three tetramethylammonium bromide hydrates (bromide-water, 1 : 4, mp 68.8°C, 1 : 5, mp 36.0°C, 1 : 7.5, mp ?19.5°C) were found. Formation of (C x H2x+1)4NBr·nH2O (x = 1–3, n = 4, 5, 7.5) hydrates was revealed.  相似文献   

14.
A thermal method using differential scanning calorimeter has been applied to aqueous solutions of a series of poly(tetraalkylammonium ethenesulfonates) (R4NPES). It was found that only the salts withR=n-C4H9 andR=i-C5H11 could form stable hydrates having large hydration numbers. The melting point and hydration numbers of these two hydrates were 12.0°C and 30±1 for the (n-C4H9)4NPES hydrate and 16.0°C and 53±2 for the (i-C5H11)4NPES hydrate, respectively. It was concluded that these hydrates were clathrate-like essentially similar to such hydrates as (n-C4H9)4NF·30H2O and (i-C5H11)4NF·40H2O.  相似文献   

15.
The reaction of 45% fluorosilicic acid with methanol solutions of several 2-substituted anilines(L) gave hexafluorosilicates (LH)2SiF6. The products were studied by elemental analysis, IR spectroscopy, mass spectrometry, and thermogravimetry. The solubility and the hydrolytic stability of the salts were estimated. The structure of the complex [CH3O(O)CC6H4NH3]2SiF6 was determined by single-crystal X-ray diffraction. The ionic structure is composed of centrosymmetric SiF 6 2? anions (the average Si-F bond length is 1.679(1) Å) and the [CH3O(O)CC6H4NH3]+ cations. The NH 3 + group is the donor for the inner-cation H-bond with the carbonyl oxygen atom (NH···O), and for two ion-ion H-bonds (NH···F). The Si-F bond lengths correlate with the strengths of the H-bonds involving the corresponding fluorine atoms.  相似文献   

16.
Preparation, Crystal and Molecular Structure of Triphenylphosphineoxide Hydrogen - fluoride (C6H5)3PO · HF (C6H5)3PO · HF was prepared from hydrofluoric acid (40%) and (C6H5)3PO in benzene. It crystallizes in the monoclinic space group P21/c with a = 1 032.8(3), b = 1 051.0(7), c = 1695.5(2) pm, β = 121.95(2)° and Z = 4; d (calc./obs.) 1.27/1.26 g ° cm?3. The structure was determined by direct methods from 2 709 independent reflections and has been refined by full matrix least squares methods to R = 0.049. In the compound HF and (C6H5)3PO are linked by a short H-bond. Some distances: O? F 238.4(5), O? H 142.3, H? F 99.8, P? O 149.5(4) pm. Angle O? H? F 159.8°.  相似文献   

17.
New multicomponent radical cation salts derived from bis(ethylenedithio)tetrathiafulvalene (ET) were prepared: bis(ethylenedithio)tetrathiafulvalene dicyanamide dihydrate α″-(ET)2N(CN)2·2H2O and bis-(ethylenedithio)tetrathiafulvalene nitrate α?-(ET)6(NO3)3·2C2H5O2N3 containing two biuret molecules (C2H5O2N3). The crystal structures of the compounds were determined, and their conducting properties were examined. Both salts have layered structures in which radical cation layers alternate with nonconducting anionic layers. The radical cation layers in the salts α″-(ET)2N(CN)2·2H2O and α?-(ET)6(NO3)3·2C2H5O2N3 are packed in the α″ and α? fashion, respectively. Anionic layers consist of polymeric chains formed by hydrogen bonding between [N(CN)2]? anions and water molecules in α″-(ET)2N(CN)2·2H2O or between NO?3 anions and biuret molecules in α?-(ET)6(NO3)3·2C2H5O2N3. Both salts show semiconductor conductivity.  相似文献   

18.
Thermal decomposition of iron(II) and cobalt(II) hexaborates has been investigated. The methods applied to investigate the process were differential thermal analysis, derivatography, crystallooptics and x-ray study. The following iron(II) hexaborate hydrates, FeO · 3B2O3 · 7.5H2O, FeO · 3B2O3 · 5H2O, FeO · 3B2O3 · 0.5H2O; iron(III) borates, Fe2O3 · 6B2O3 and 2Fe2O3 · B2O3; cobalt(II)hexaborate hydrates CoO · 3B2O3 · 7.5H2O, CoO · 3B2O3 · 5H2O, CoO · 3B2O3 · 0.5H2O, CoO · 3B2O3 and the decomposition product 2CoO · 3B2O3 have been isolated. Hepta- and semihydrates of cobalt(II) and iron(II) hexaborates have been proved to be isomorphous. It has been established that in the case of cobalt and iron hexaborates the exothermic maximum refers to a decomposition reaction and to the formation of a borate containing a smaller proportion of boron and boric anhydride.  相似文献   

19.
In the title compound, 2[Fe(C5H5)(C6H5O2)]·C6H12N2, the molecular components are linked into finite three‐component aggregates by strong O—H?N hydrogen bonds [O?N 2.578 (4) and 2.604 (5) Å; O—H?N 170 (5) and 174 (6)°]; these aggregates are further linked by C—H?O hydrogen bonds [C?O 3.327 (5)–3.401 (5) Å; C—H?O 149–157°] into continuous sheets in the form of (6,3) nets.  相似文献   

20.
Preparation and Crystal Structure of [Co(NH3)6]2P4O13 7·5H2O Single crystals of [Co(NH3)6]P4O13 · 5 H2O were obtained by diffusion controlled growth. To this end sodium polytetraphosphate was prepared by column chromatography and allowed to react with [Co(NH3)6]Cl3. The compound [Co(NH3)6]2P4O13 · 5 H2O contains the novel isolated polytetraphosphate anion. The expected systematic variation in bond length in the P? O? P bridges of the poly tetraphosphate anion was verified. The conformation of the anion is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号