首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scanning probe microscopes (SPMs) share a number of common features which give the techniques advantages over conventional light and electron microscopy. First, high resolution, up to the atomic level, is possible in certain cases, and second, they are nondestructive, requiring no staining or coating and the images can be obtained in the hydrated state or under water. Scanning probe microscopes, particularly scanning tunnelling microscopes (STM) and atomic force microscopes (AFM), have been used to study food-related systems, ranging from relatively large structures such as starch granules to the organisation of secondary structures in proteins and the interaction of proteins. The seed storage proteins (gluten) of wheat are responsible for the viscous and elastic properties of wheat doughs that allow them to be used for a wide range of different food products. Using AFM and STM, images of individual and groups of proteins have been obtained in both the dry and hydrated states. The ability to work in liquid environments allows the conformation of proteins to be determined under conditions approaching “native.” The AFM and STM have been used to image both gliadins and glutenins and to study their aggregative behaviour in relation to gluten and dough systems.  相似文献   

2.
The technique demonstrated here provides features of both scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The metallic probe acts to record current variations and sense forces from the same sample area simultaneously. Thus, separate images may be recorded, in registry. The collected data allows real space correlations between some electrical properties and the geometric structure of a sample surface. The same tip is used since the geometry and condition of the tip can effect the data recordings. Platinum alloys, tungsten and graphite tips have been employed successfully. An AFM lever can respond to surface contact forces, within the elastic limits of the sample, while electric current is sensed by the tip of the lever. The usefulness of this experimental procedure is tested here by an application to semiconducting samples of Ag-doped CdTe in air and in paraffin oil media.  相似文献   

3.
扫描探针显微镜技术的出现开辟生命科学研究的新纪元并逐步发展成为在纳米尺度研究细胞结构与功能的一类新型的显微镜技术。扫描离子电导显微镜技术就是新近发展起来的这一扫描探针显微镜技术家族中的一员,可被用来在生理条件下、高分辨率及非接触地研究活细胞的表面形貌,从而帮助人们深入研究细胞微观结构与功能的关系。本文简要介绍扫描离子电导显微镜技术的基本原理,并结合国外研究现状综述该技术在纳米生物学研究中的应用。  相似文献   

4.
5.
The tetrahedral tip is introduced as a new type of a probe for scanning near-field optical microscopy (SNOM). Probe fabrication, its integration into a scheme of an inverted photon scanning tunnelling microscope and imaging at 30 nm resolution are shown. A purely optical signal is used for feedback control of the distance of the scanning tip to the sample, thus avoiding a convolution of the SNOM image with other simultaneous imaging modes such as force microscopy. The advantages of this probe seem to be a very high efficiency and its potential for SNOM at high lateral resolution below 30 nm.  相似文献   

6.
W. K. Chim 《Scanning》1995,17(5):306-311
Investigations on the use of the scanning probe microscope (SPM) in the atomic force microscopy (AFM) mode for topography imaging and the magnetic force microscopy (MFM) mode for magnetic imaging are presented for a thin-film recording head. Results showed that the SPM is suitable for imaging the surface profile of the recording head, determining the width of the pole gap region, and mapping the magnetic field patterns of the recording head excited under current bias conditions of different polarity. For the cobalt sputter-coated tips used in MFM imaging, it was found that the magnetic field patterns obtained under different polarities of the current bias to the recording head were similar. This can be explained by the nature of the thin-film MFM tip, in which the direction of the tip magnetic moment can follow the stray magnetic field of the sample as the current bias to the recording head reverses in direction.  相似文献   

7.
In typical scanning probe microscope experiment a three‐dimensional image of a substrate is obtained. For a given scanning mechanism, the time needed to image an area depends mainly on the number of samples and the size of the image. The imaging speed is further compromised by drifts associated with the substrate and the piezoscanner. It is therefore desirable to improve the imaging speed with limited impact to the effective resolution of the resulting image. By utilizing an adaptive sampling scheme with fractal compression technique, we have demonstrated that the number of the required samples can be significantly reduced with minimal impact to the image quality. SCANNING 30: 463–473, 2008. © 2008 Wiley Periodicals, Inc.  相似文献   

8.
开放式多功能扫描探针显微镜系统   总被引:2,自引:0,他引:2  
开放式多功能扫描探针显微镜、集成扫描隧道显微镜、原子力显微镜、横向力显微镜和静电力显微镜.具有接触、半接触和非接触工作模式,可进行作用力、电流、电位、光能量等参数的高度局域综合测量,具有极高的开放性和可扩展性,支持用户进行二次开发。  相似文献   

9.
Scanning tunnelling microscopy (STM) and transmission electron microscopy (TEM) have been used to investigate the surface of a pyrolitic graphite oxidized in liquid phase by NaClO. Two main features of the oxidized HOPG are revealed by STM. First, a large number of steps of different heights have developed on the graphite surface. These steps can be observed by TEM on another kind of graphite, HSAG 12, but this technique cannot give any information on their heights. Another kind of defect on the previously flat surface of HOPG consists in patches where the surface is rough and perturbed. These domains are very difficult to observe by TEM due to a poor contrast. Thus for the study of surface heterogeneities intentionally created on graphite, STM, providing information along three directions, appears to be complementary of TEM which gives only images of project area.  相似文献   

10.
This paper introduces the new field of microtribology; it gives a general overview and then presents some typical research results. Micromachines use very lightweight sliding parts, and their wear is primarily due to surface interaction forces rather than load or weight. The ultimate goal of microtribology is to create practical zero-wear devices. Microtribological evaluations of surfaces have started using new tools, such as the scanning probe microscope. Quasi-static indentation tests, impact indentation tests, line scratch tests, and scanning scratch tests have been performed using an atomic force microscope with a diamond tip. Frictional force distributions and adhesive force distributions have also been obtained using atomic force microscopes. Water clusters adsorbed onto solid surfaces have been observed using a scanning tunnelling microscope. The configuration, adsorption, and mobility of lubricant molecules have also been evaluated using a scanning tunnelling microscope.  相似文献   

11.
We have adapted specimen preparation techniques of conventional electron microscopy for visualizing chromatin structures in the scanning force microscope (SFM) in air and in liquid. The beaded substructure of the nucleoprotein filament was obtained after hypotonic lysis of chicken erythrocytes and air drying, whereas supranucleosomal structures were preserved after treatment of cell nuclei with detergent. In the latter case, the nucleosomes were still distinct but appeared more condensed. A modified droplet diffusion-spreading technique of chromatin from Namalwa cells (a human B-lymphoid line) yielded a uniform filamentous morphology and similar fiber appearance. A reversible swelling of spread chromatin was observed upon exposure of air-dried samples to solutions differing in salt concentrations.  相似文献   

12.
Micic M  Chen A  Leblanc RM  Moy VT 《Scanning》1999,21(6):394-397
Protein-functionalized atomic force microscopy (AFM) tips have been used to investigate the interaction of individual ligand-receptor complexes. Herein we present results from scanning electron microscopy (SEM) studies of protein-functionalized AFM cantilever tips. The goals of this study were (1) to examine the surface morphology of protein-coated AFM tips and (2) to determine the stability of the coated tips. Based on SEM images, we found that bovine serum albumin (BSA) in solution spontaneously adsorbed onto the surface of silicon nitride cantilevers, forming a uniform protein layer over the surface. Additional protein layers deposited over the initial BSA-coated surface did not significantly alter the surface morphology. However, we found that avidin-functionalized tips were contaminated with debris after a series of force measurements with biotinylated agarose beads. The bound debris presumably originated from the transfer of material from the agarose bead. This observation is consistent with the observed deterioration of functional activity as measured in ligand-receptor binding force experiments.  相似文献   

13.
We have studied the (001) surface of single crystal YBa2Cu3O7-x high-Tc superconductors using scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) at room temperature at ambient pressure. Both methods show flat terraces with steps which are multiples of the c-axis lattice constant (of 1·17 nm) high. Our results show that the bulk crystal structure extends to the surface and that the crystals were formed by island growth. Only occasionally tunnelling was possible with sample bias voltages below +1·0 V. We interpret the observed voltage dependence and the difficulty to get good STM images to be due to the presence of a less-conducting surface layer. Auger spectroscopy indicates that carbon is present at the surface, which is probably related to a contamination layer.  相似文献   

14.
We have used the technique of scanning force microscopy (SFM) to investigate the reaction of both amino acids and activated nucleotides in the presence of the clay mineral Cu(II)-exchanged hectorite. Using simulated prebiotic heating and wetting cycles, we have shown that the clay mineral acts to adsorb, concentrate, and subsequently catalyze the polymerization of these biological monomers into short peptides and oligonucleotides. The presence of the Cu(II) cations within the clay intergallery regions, and at surface step edges and cracks, is crucial for the observed reactions to occur. Clay minerals such as hectorite may have thus played an important role in the evolution of biologically viable molecules on the prebiotic earth.  相似文献   

15.
We have used a new variable temperature scanning tunnelling microscope (STM) to study quasi-1D and 2-D charge-density wave (CDW) systems. The 1-D systems, typified by NbSe3 and TaS3, are of special interest since they exhibit unusual transport phenomena associated with moving CDW above a threshold electric field. In the case of NbSe3, room temperature STM images show both major and subtle details of the lattice structure. At present, however, images taken below the Peierls transition temperature of TP=144 K resolve major lattice details but are not sufficiently clear to resolve the CDW. On the other hand, for the fully gapped CDW system orthorhombic-TaS3, the CDW modulation superimposed on the lattice structure and having the correct period of four times the S-S spacing of 3·3 Å, is observed below TP=215 K. Above TP, the main observable feature is the S-S spacing along the chains. STM measurements have also been performed on the 2-D CDW system 1T-TaS2 in its incommensurate, nearly commensurate, fully commensurate and trigonal phases. For the nearly commensurate phase, STM images show uniform commensurability with a relatively low concentration of small, time-varying discommensurations in contrast to models pradicting a regular domain structure. In the trigonal phase, however, evidence is seen for the striped phase composed of long, nearly parallel discommensurations.  相似文献   

16.
The protein surface layer of the bacterium Deinococcus radiodurans (HPI layer) was examined with an atomic force microscope (AFM). The measurements on the air-dried, but still hydrated layer were performed in the attractive imaging mode in which the forces between tip and sample are much smaller than in AFM in the repulsive mode or in scanning tunnelling microscopy (STM). The results are compared with STM and transmission electron microscopy (TEM) data.  相似文献   

17.
The possibility of using the intrinsic three-dimensional imaging capability of scanning tunnelling microscopes to study the fractal character of surfaces by Mandelbrot's method of ‘filling’ with water up to a given height is discussed. By plotting on a log-log plot the area against the perimeter of the ‘lakes' that appear, the fractal dimension is obtained from the slope of the straight line fitting the data points. The possible errors and limitations of the method are discussed from results obtained from both simulated and real surfaces. The effect of noise and resolution in the scanning tunnelling microscope on the calculation of the fractal dimension is also discussed.  相似文献   

18.
The visualization of the data obtained with scanning probe microscopes can be improved by the use of virtual reality software which has recently become available commercially. One such software program was applied to images obtained with an atomic force microscope. The mapping capabilities of this new visualization technique as well as the images were quite striking when viewed in virtual reality.  相似文献   

19.
Scanning force microscopy (SFM) holds great promise for biological research. Two major problems that have confronted imaging with the scanning force microscope have been the distortion of the image and overestimation in measurements of lateral size due to the varying geometry and characteristics of the scanning tip. In this study, spherical colloidal gold particles (10, 20 and 40 nm in diameter) were used to determine (1) tip parameters (size, shape and semivertical angle); (2) the distortion of the image caused by the tip; and (3) the overestimation or broadening of lateral dimensions. These gold particles deviate little in size, are rigid and have a size similar to biological macromolecules. Images of the colloidal gold particles by SFM were compared with those obtained by electron microscopy (EM). The height of the gold particles as measured by SFM and EM was comparable and was little affected by the tip geometry. The measurements of the lateral dimensions of colloidal gold, however, showed substantial differences between SFM and EM in that SFM resulted in an overestimate of the lateral dimensions. Moreover, the distortion of images and broadening of lateral dimensions were specific to the SFM tip used. The calibration of the SFM tip with mica provided little clue as to the type of distortion and the amount of lateral broadening observed when the larger gold particles were scanned. The SFM image also depended on the orientation of the tip with respect to the specimen. Our results suggest that quantitative SFM imaging requires calibration to identify and account for both the distortions and the magnitude of lateral broadening caused by the cantilever tip. Calibration with gold particles is fast and nondestructive to the tip. The raw imaging data of the specimen can be corrected for the tip effect and true structural information can be derived. In summary, we present a simple and practical method for the calibration of the SFM tip using gold particles with a size in the range of biomacromolecules that allows: (1) selection of a cantilever tip that produces an image with minimal distortion; (2) quantitative determination of tip parameters; (3) reconstruction of the shape of the tip at different heights from the tip apex; (4) appreciation of the type of distortion that may be introduced by a specific tip and quantification of the overestimation of the lateral dimensions; and (5) calculation of the true structure of the specimen from the image data. The significance is that such calibration will permit quantitative and accurate imaging with SFM.  相似文献   

20.
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号