首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
The possibility of using the intrinsic three-dimensional imaging capability of scanning tunnelling microscopes to study the fractal character of surfaces by Mandelbrot's method of ‘filling’ with water up to a given height is discussed. By plotting on a log-log plot the area against the perimeter of the ‘lakes' that appear, the fractal dimension is obtained from the slope of the straight line fitting the data points. The possible errors and limitations of the method are discussed from results obtained from both simulated and real surfaces. The effect of noise and resolution in the scanning tunnelling microscope on the calculation of the fractal dimension is also discussed.  相似文献   

2.
A major disadvantage of scanning probe microscopy is the slow speed of image acquisition, typically less than one image per minute. This paper describes three techniques that can be used to increase the speed of a conventional scanning probe microscope by greater than one hundred times. This is achieved by the combination of high-speed vertical positioning, sinusoidal scanning, and high-speed image acquisition. These techniques are simple, low-cost, and can be applied to many conventional microscopes without significant modification. Experimental results demonstrate an increased scan rate from 1 to 200 Hz. This reduces the acquisition time for a 200×200 resolution image from 3 min to 1 s.  相似文献   

3.
In this paper, the design, construction, and characterization of a metrological scanning force microscope (SFM) for the purposes of dimensional measurement of surface features is discussed. Using this instrument, precision measurements of engineering surfaces can be performed in air with subnanometer resolution. In this design, scanning of the specimen in the x and y planes and surface profiling in z-axis are each monitored directly by capacitance sensors. The present SFM is capable of a resolutions of approximately 0.1 nm over 15 μm range in z-axis and about 1 nm over 50 pm scanning range in x− and y-axes with a repeatability of less than 1 nm. The linearity error was measured to be within the noise level. Specimens ranging from soft polymeric films to polished zerodur are used to illustrate its metrological capability.  相似文献   

4.
In this paper we present a method for the vertical calibration of a metrological atomic force microscope (AFM), which can be applied to most AFM systems with distance sensors. A thorough analysis describes the physical z-coordinate of an imaged surface as a function of the observed and uncorrected z-coordinate and the horizontal position. The three most important correction terms in a Taylor expansion of this function are identified and estimated based on series of measurements on a calibrated step height and a flat reference surface. Based on this calibration a number of step heights are calibrated by the AFM with measured values consistent with reference values, where available. Relative standard uncertainty of about 0.5% is achieved for step heights above 200 nm. For step heights below 50 nm, the standard uncertainty is about 0.5 nm. While a calibration of step heights done by AFM and interference microscopy can be compared directly as demonstrated here, this is not straightforward for roughness measurement. To asses this, the exact same area on an important applied surface (a hip joint prosthesis) was measured by both AFM and interference microscopy. Similarities in the images were seen; however, the calculated roughness was significantly different (Rq=3 and 1.5 nm). Applying a low-pass filter with a cut-off wavelength of λc=1.5 μm, the appearance of the images and the calculated roughness become almost identical. This strongly suggests that the two methods are consistent, and that the observed differences in shape and roughness in the nanometer range can be explained by the limited lateral resolution of the interference microscope.  相似文献   

5.
A new dual-imaging-unit atomic force microscope (DIU-AFM) was developed for wide-range length metrology. In the DIU-AFM, two AFM units were combined, one as a reference unit, and the other a test one. Their probes with Z piezo elements and tips were horizontally set in parallel at the same height to reduce errors due to geometric asymmetry. An XY scanner was attached to an XY block that was able to move in the X direction with a step of about 500 nm. A standard porous alumina film was employed as the reference sample. Both reference sample and test sample were installed at the center of the XY scanner on the same surface and were simultaneously imaged. The two images had the same lateral size, and thus the length of the test sample image could be accurately measured by counting the number of periodic features of the reference one. The XY block together with the XY scanner were next moved in the X direction for about 1.5 microm and a second pair of reference and test images were obtained by activating the scanner. In this way, a series of pairs of images were acquired and could be spliced into two wide-range reference and test images, respectively. Again, the two spliced images were of the same size and the length of test image was measured based on the reference one. This article presents a discussion about the structure and control of the DIU-AFM system. Some experiments were carried out on the system to demonstrate the method of length calculation and measurement. Experiments show a satisfactory result of wide-range length metrology based on the hexagonal features of the porous alumina with a periodic length of several tens of nanometers. Using this method the DIU-AFM is capable of realizing nanometer-order accuracy length metrology when covering a wide range from micron to several hundreds of microns, or even up to millimeter order.  相似文献   

6.
To improve the performance of atomic force microscopes regarding speed and noise sensitivity, it is important to consider the mechanical rigidity of the actuator (scanner), and the overall mechanical structure. Using finite element analysis in the design process, it was possible to increase the first resonance frequency from 950 Hz for the whole system to 23.4 kHz for the whole system. This constitutes a factor of 25 in resonance frequency and a factor of 625 in stiffness and, hence, noise immunity.  相似文献   

7.
Observations made using AFM and SEM have been combined in order to study the structure of asphalts. Fluorescence microscopy was used to aid in understanding the structural changes occurring when polymer is added to the asphalts.   With the atomic force microscope we are able to study the structure of the asphalts without any pre-preparation. Despite very low resolution, our study reveal ed a network of asphaltene molecules with regard to asphalt gel. The same result is obtained by SEM observation but with a much better resolution. SEM observation, however, needs an adequate preparation method.   In the presence of polymer we observed a rearrangement of the initial asphaltene association which leads to the assumption that polymer can aggregate the asphaltene phase.  相似文献   

8.
9.
用光学显微干涉法进行表面形貌测量时其深度测量范围的扩大和形貌测量精度的提高是一对矛盾。为此,本文设计出了一种基于波长轮换与相移扫描相结合的三波长表面形貌测量系统,并提出了一种基于椭圆拟合与相位差大小尺度相结合的相位提取与识别算法。将这种算法运用于多波长干涉图像的数据处理,有效地提高了形貌的整体测量精度,并拓展了深度测量范围。实验结果表明:在深度测量范围扩大近15倍的条件下,采用粗糙度国家基准校准的方波多刻线样板得到的表面粗糙度数据与校准数据的相对误差仅为4.12%,表明该系统在一定的深度范围内能够实现表面形貌的高精度测量。另外,针对该系统设计的多波长相位识别算法对环境噪声要求不高,可以支持系统的高噪声或在线测量。  相似文献   

10.
Mitsche S  Poelt P  Wagner J 《Scanning》2006,28(5):282-288
Scanning electron microscopy combined with energy-dispersive x-ray spectrometry (SEM-EDXS) is widely used for particle analysis. In the case of submicron particles, especially for particles that are smaller than 300 nm, the measured particle size is influenced by specimen preparation, SEM operating parameters, the mean atomic number of the particles, and the threshold value used for binarization. The use of uncoated particles on a conductive substrate and image acquisition using an in-lens detector are recommended for precise morphologic results in this size range.  相似文献   

11.
This article presents a novel method to measure the in situ thickness of porous alumina (PA) films. The PA films were prepared in oxalic acid at 30, 40, and 60 V direct current. Based on the atomic force microscope measurements, PA film porosities and refractive indexes measurements were acquired. With the observation of the reflectance spectra of PA films over the wavelength range 400-1000 nm, the nondestructive thickness measurement of the PA films were accurate and were found to be 3.66, 7.76, and 11.38 mum, respectively. Experiments showed that when the applied voltage increased, the pores diameters and interpore distances were enlarged, and the interference pattern was stronger and exhibited a greater number of oscillations over the given wavelength range, which indicated that the PA film's thickness increased. Our results match with the theoretical predictions and analysis quite well.  相似文献   

12.
R. Wurster  B. Ocker 《Scanning》1993,15(3):130-135
Metallic nanoparticles have been produced on vitreous carbon substrates by means of thermal evaporation. From pictures of the particles, made by a high-resolution scanning electron microscope (HRSEM), a semispherical shape is suggested due to the total mass of deposited material. Atomic force microscopy (AFM) has been applied to this sample in order to get direct topographic information. The AFM has been operated with normal and super tips, the latter having a smaller cone angle and radius, thus following more precisely the contours of an object. Simultaneously lateral-force microscopic (LFM) images have been recorded. Major differences between the contents of HRSEM- and AFM-images are considered, emphasizing the important influence of the tips' geometry. Both the AFM and LFM line scans have been compared with and have qualitatively agreed with those calculated under simplifying assumptions.  相似文献   

13.
构建了一种可快速大面积测量光栅表面微结构的原子力显微镜(AFM)系统,研究了不同扫描模式下扫描速度对测量结果的影响。分别测量了微悬臂探针在恒高模式与恒力模式下的频谱,获得了这两种模式下微悬臂探针的有效带宽。基于恒高模式与恒力模式,在不同扫描速度下分别测量了光栅微结构表面上的一条直线与一个圆周,进而分析了扫描速度对测量结果的影响。基于该AFM系统,采用恒高模式下不失真扫描速度对光栅微结构表面进行了快速、大面积三维形貌测量实验。实验结果表明:测量光栅微结构表面上直径为4.0mm的圆形区域所用时间仅为40s。当扫描速度不超过微悬臂探针有效带宽所对应的速度时,所构建的AFM系统可无失真地实现微结构表面的快速、大面积测量。  相似文献   

14.
Transient dynamics of tapping mode atomic force microscope (AFM) for critical dimension measurement are analyzed. A simplified nonlinear model of AFM is presented to describe the forced vibration of the micro cantilever-tip system with consideration of both contact and non-contact transient behavior for critical dimension measurement. The governing motion equations of the AFM cantilever system are derived from the developed model. Based on the established dynamic model, motion state of the AFM cantilever system is calculated utilizing the method of averaging with the form of slow flow equations. Further analytical solutions are obtained to reveal the effects of critical parameters on the system dynamic performance. In addition, features of dynamic response of tapping mode AFM in critical dimension measurement are studied, where the effects of equivalent contact stiffness, quality factor and resonance frequency of cantilever on the system dynamic behavior are investigated. Contact behavior between the tip and sample is also analyzed and the frequency drift in contact phase is further explored. Influence of the interaction between the tip and sample on the subsequent non-contact phase is studied with regard to different parameters. The dependence of the minimum amplitude of tip displacement and maximum phase difference on the equivalent contact stiffness, quality factor and resonance frequency are investigated. This study brings further insights into the dynamic characteristics of tapping mode AFM for critical dimension measurement, and thus provides guidelines for the high fidelity tapping mode AFM scanning.  相似文献   

15.
利用原子力显微镜(AFM)硅悬臂器件具有多阶谐振模态的特性,提出了基于硅悬臂高阶谐振特性构建动态AFM来实现快速扫描的方法,并研制了可工作于一阶模态和高阶模态的AFM。介绍了高阶谐振AFM系统的基本结构和工作原理,从理论上证明了利用硅悬臂梁高阶谐振特性实现快速扫描的可行性。以自制的AFM为研究对象,分析了影响动态AFM扫描速度的主要因素,对系统各模块的响应时间进行了分析、测试,并通过实验证明了AFM在二阶谐振模态下的稳定时间明显小于一阶谐振模态下的稳定时间。最后,分别用一阶、二阶谐振模态对光栅试样在同一区域的表面形貌进行了扫描测试,测试数据表明:在相同条件下,AFM的扫描速度在二阶谐振模态下约是一阶模态下的3.3倍。理论分析和实验结果证明了利用高阶谐振探针提高AFM扫描速度的可行性和有效性。  相似文献   

16.
Cellular DNA crosslinks are a type of DNA damage induced by toxic chemicals or high‐energy radiation. If damaged DNA is not rapidly repaired, cells will die or mutate. To evaluate the types of DNA damage and their influence on vital cell activities, it is necessary to be able to detect DNA crosslinks. To date, indirect methods such as alkaline elution, potassium chloride–sodium dodecyl sulfate assay and comet assay have been used to detect DNA damage. Direct morphological observation, on the other hand, may be a useful tool to differentiate the types of DNA damage. In this report, atomic force microscopy (AFM) has been employed to visualize the breakage and crosslinking of cellular DNA strands in cells treated with formaldehyde and hydrogen peroxide. Our results showed that toxic chemical‐induced crosslinking of cellular DNA occurred in a dose‐dependent manner. DNA conglomerates were observed with high concentrations of formaldehyde, and the AFM observations were consistent with those of a comet assay. Our experiments demonstrate that AFM is an efficient method to differentiate the types of DNA damage. SCANNING 31: 75–82, 2009. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
I Müllerová 《Scanning》2001,23(6):379-394
The modern trend towards low electron energies in scanning electron microscopy (SEM), characterised by lowering the acceleration voltages in low-voltage SEM (LVSEM) or by utilising a retarding-field optical element in low-energy SEM (LESEM), makes the energy range where new contrasts appear accessible. This range is further extended by a scanning low-energy electron microscope (SLEEM) fitted with a cathode lens that achieves nearly constant spatial resolution throughout the energy scale. This enables one to optimise freely the electron beam energy according to the given task. At low energies, there exist classes of image contrast that make particular specimen data visible most effectively or even exclusively within certain energy intervals or at certain energy values. Some contrasts are well understood and can presently be utilised for practical surface examinations, but others have not yet been reliably explained and therefore supplementary experiments are needed.  相似文献   

18.
An atomic force microscope (AFM) was combined with a conventional optical microscope. The optical microscope proved to be very convenient for locating objects of interest. In addition, the high-resolution AFM image can be compared directly with the traditional optical image. The instrument was used to study chromosome structures. High-resolution chromosome images revealed details of the 30-nm chromatide structure, confirming earlier electron microscopic observations. Chromosomes treated with trypsin revealed a banding pattern in height which is very similar to the optical image observed after staining with Giemsa. Furthermore, it is shown that the AFM can be used to locate DNA probes on in situ hybridized chromosomes. Images of the synaptonemal complex isolated from rat spermatocytes revealed details that improve the understanding of the three-dimensional structure of this protein.  相似文献   

19.
20.
A hybrid scanning transmission electron/scanning tunnelling microscope vacuum system is introduced, which allows freeze drying and metal coating of biological samples and their simultaneous observation by scanning transmission electron microscopy and scanning tunnelling microscopy (STM). Different metal coatings and STM tips were analysed to obtain the highest possible resolution for such a system. Bovine liver catalase was used as a test sample and the STM results are compared to a molecular scale model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号