共查询到19条相似文献,搜索用时 84 毫秒
1.
2.
微生物燃料电池(MFC)是一种通过微生物的催化作用将有机物中的化学能直接转化为电能的生物反应装置,研究表明内阻是限制微生物燃料电池产能的重要因素。本文对目前国内外有关微生物燃料电池内阻的研究成果进行了总结,系统介绍了微生物燃料电池内阻定义、构成和常用的微生物燃料电池内阻测定方法,重点分析了反应器、产电底物、产电微生物和操作条件等对微生物燃料电池内阻的影响,并结合已有的研究结果提出了降低内阻、提高微生物燃料电池产电性能的可行性方法。 相似文献
3.
微生物燃料电池(Microbial fuel cell,MFC)作为一种生物电化学装置,在可再生能源生产和废水处理方面的巨大潜力已引起广泛关注。然而MFC面临输出功率低、欧姆内阻高以及启动时间长等问题,极大限制了其在实际工程中的应用。MFC中阳极是微生物附着的载体,对电子的产生及传递起着关键作用,开发优质的生物电极已发展成为改善MFC性能的有效途径。共轭聚合物具有成本低、电导率高、化学稳定性及生物相容性好等优点,利用共轭聚合物修饰生物电极结构,可以实现大比表面积、缩短电荷转移路径,从而实现高效生物电化学性能。同时,纳米级共轭聚合物包覆细菌,可以使细菌产生的电子有效地传递到电极。文中综述了最近报道的共轭聚合物在MFC中的应用,重点介绍了共轭聚合物修饰的MFC阳极,系统分析了共轭聚合物的优点及局限性,以及这些高效复合生物电极如何解决MFC应用中存在的低输出功率、高欧姆内阻及长启动时间等问题。 相似文献
4.
新型产电微生物(Electricigens)的发现,使得微生物燃料电池概念的内涵发生了根本性的变化,展现了广阔的应用前景。这种微生物能够以电极作为唯一电子受体,把氧化有机物获得的电子通过电子传递链传递到电极产生电流,同时微生物从中获得能量而生长。这种代谢被认为是一种新型微生物呼吸方式。以这种新型微生物呼吸方式为基础的微生物燃料电池可以同时进行废水处理和生物发电,有望可以把废水处理发展成一个有利可图的产业,是MFC最有发展前景的方向。 相似文献
5.
6.
7.
8.
目前含硫废水污染很大,微生物燃料电池具有高效环境友好的特点成为研究热点。本文简要概述微生物燃料电池结构和发展历史,利用微生物燃料电池技术处理含硫废水的研究进展,最后分析了目前研究发展趋势和展望。 相似文献
9.
随着世界经济的高速发展和人口的不断增长,能源短缺和环境污染问题日益成为制约发展的瓶颈.微生物燃料电池(microbial fuel cell,MFC)能将污染物中蕴含的化学能直接转化为电能,实现同步污水处理和电能回收,是一种极具前景的可持续污水处理技术.同时,MFC在污泥处理、生物修复、环境监测、海水淡化等方面也展示了... 相似文献
10.
《中国生物工程杂志》2020,(Z1)
随着世界经济的高速发展和人口的不断增长,能源短缺和环境污染问题日益成为制约发展的瓶颈。微生物燃料电池(microbial fuel cell,MFC)能将污染物中蕴含的化学能直接转化为电能,实现同步污水处理和电能回收,是一种极具前景的可持续污水处理技术。同时,MFC在污泥处理、生物修复、环境监测、海水淡化等方面也展示了诱人的前景。基于科睿唯安Web of Science数据库和德温特专利检索分析平台(Derwent Innovation,DI),对MFC领域1990~2018年的论文和专利数据进行统计分析,得出全球MFC领域的发展趋势、国际分布、研发热点和技术格局。在此基础上,对未来MFC领域的发展做出了展望,对中国MFC产业化发展提出了思考和建议。 相似文献
11.
Anode-respiring bacteria (ARB) in a biofilm anode carry out an oxidation half-reaction of organic matter, producing an electrical current from renewable biomass, including wastes. At the same time, ARB produce protons, usually one proton for every electron. Our study shows how current density generated by an acclimated ARB biofilm was limited by proton transport out of the biofilm. We determined that, at high current densities, protons were mainly transported out of the biofilm by protonating the conjugate base of the buffer system; the maximum current generation was directly related to the transport of the buffer, mainly by diffusion, into and out of the biofilm. With non-limiting acetate concentrations, the current density increased with higher buffer concentrations, going from 2.21 +/- 0.02 A m(-2) with 12.5-mM phosphate buffer medium to 9.3 +/- 0.4 A m(-2) using a 100-mM phosphate buffer at a constant anode potential of E(anode) = -0.35 V versus Ag/AgCl. Increasing the concentration of sodium chloride in the medium (0-100 mM) increased current density by only 15%, indicating that ion migration was not as important as diffusion of phosphate inside the biofilm. The current density also varied strongly with medium pH as a result of the buffer speciation: The current density was 10.0 +/- 0.8 A m(-2) at pH 8, and the pH giving one-half the maximum rate was 6.5. A j-V curve analysis using 100 mM phosphate buffer showed a maximum current density of 11.5 +/- 0.9 A m(-2) and half-saturation potential of -0.414 V versus Ag/AgCl, a value that deviated only slightly from the standard acetate potential, resulting in small anode-potential losses. We discuss the implications of the proton-transport limitation in the field of microbial fuel cells and microbial electrolytic cells. 相似文献
12.
Shigeru Sasaki Soichi Arai Hiromichi Kato Masao Fujimaki 《Bioscience, biotechnology, and biochemistry》2013,77(2):270-275
Volatile components obtained by the extraction of “Katsuobushi” with 80% ethanol and by the subsequent steam distillation of the extract were fractionated by the usual methods, and the resulting hydrocarbon fraction was investigated. Gas chromatographic study on this fraction originated from “Katsuobushi” of bonito (Katsuwonus pelamis) revealed 9 hydrocarbons, including n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane, n-nonadecane, n-eicosane, n-heneicosane and n-docosane, which were tentatively identified by the retention times with the aid of authentic hydrocarbons. n-Pentadecane and n-heptadecane that were main components among these hydrocarbons were identified further by NMR and IR spectrometry. “Katsuobushi” of frigate mackerel (Auxis thazard), mackerel (Scomber Japonicus Houttuyn) or muroaji (Decapterus muroadsi) also contained n-penta-decane and n-heptadecane in large amounts, but did other hydrocarbons in negligible amounts.Possible mechanisms of the hydrocarbon formation during the processing of “Katsuobushi” were discussed. 相似文献
13.
Microbial population and functional dynamics associated with surface potential and carbon metabolism
Shun'ichi Ishii Shino Suzuki Trina M Norden-Krichmar Tony Phan Greg Wanger Kenneth H Nealson Yuji Sekiguchi Yuri A Gorby Orianna Bretschger 《The ISME journal》2014,8(5):963-978
Microbial extracellular electron transfer (EET) to solid surfaces is an important reaction for metal reduction occurring in various anoxic environments. However, it is challenging to accurately characterize EET-active microbial communities and each member''s contribution to EET reactions because of changes in composition and concentrations of electron donors and solid-phase acceptors. Here, we used bioelectrochemical systems to systematically evaluate the synergistic effects of carbon source and surface redox potential on EET-active microbial community development, metabolic networks and overall electron transfer rates. The results indicate that faster biocatalytic rates were observed under electropositive electrode surface potential conditions, and under fatty acid-fed conditions. Temporal 16S rRNA-based microbial community analyses showed that Geobacter phylotypes were highly diverse and apparently dependent on surface potentials. The well-known electrogenic microbes affiliated with the Geobacter metallireducens clade were associated with lower surface potentials and less current generation, whereas Geobacter subsurface clades 1 and 2 were associated with higher surface potentials and greater current generation. An association was also observed between specific fermentative phylotypes and Geobacter phylotypes at specific surface potentials. When sugars were present, Tolumonas and Aeromonas phylotypes were preferentially associated with lower surface potentials, whereas Lactococcus phylotypes were found to be closely associated with Geobacter subsurface clades 1 and 2 phylotypes under higher surface potential conditions. Collectively, these results suggest that surface potentials provide a strong selective pressure, at the species and strain level, for both solid surface respirators and fermentative microbes throughout the EET-active community development. 相似文献
14.
Prathap Parameswaran César I. Torres Hyung‐Sool Lee Rosa Krajmalnik‐Brown Bruce E. Rittmann 《Biotechnology and bioengineering》2009,103(3):513-523
We demonstrate that the coulombic efficiency (CE) of a microbial electrolytic cell (MEC) fueled with a fermentable substrate, ethanol, depended on the interactions among anode respiring bacteria (ARB) and other groups of micro‐organisms, particularly fermenters and methanogens. When we allowed methanogenesis, we obtained a CE of 60%, and 26% of the electrons were lost as methane. The only methanogenic genus detected by quantitative real‐time PCR was the hydrogenotrophic genus, Methanobacteriales, which presumably consumed all the hydrogen produced during ethanol fermentation (~30% of total electrons). We did not detect acetoclastic methanogenic genera, indicating that acetate‐oxidizing ARB out‐competed acetoclastic methanogens. Current production and methane formation increased in parallel, suggesting a syntrophic interaction between methanogens and acetate‐consuming ARB. When we inhibited methanogenesis with 50 mM 2‐bromoethane sulfonic acid (BES), the CE increased to 84%, and methane was not produced. With no methanogenesis, the electrons from hydrogen were converted to electrical current, either directly by the ARB or channeled to acetate through homo‐acetogenesis. This illustrates the key role of competition among the various H2 scavengers and that, when the hydrogen‐consuming methanogens were present, they out‐competed the other groups. These findings also demonstrate the importance of a three‐way syntrophic relationship among fermenters, acetate‐consuming ARB, and a H2 consumer during the utilization of a fermentable substrate. To obtain high coulombic efficiencies with fermentable substrates in a mixed population, methanogens must be suppressed to promote new interactions at the anode that ultimately channel the electrons from hydrogen to current. Biotechnol. Bioeng. 2009;103: 513–523. © 2009 Wiley Periodicals, Inc. 相似文献
15.
Shinji Inukai Kazuyoshi Sato Shoichi Shimizu 《Bioscience, biotechnology, and biochemistry》2013,77(11):2229-2234
As a growth factor, Rhizobium meliloti required cobalt ion, or vitamin B12 which was found to be incorporated into the cells without decomposition to cobalt ion. Trial of replacement for cobalt ion by the addition of various compounds to the cobalt-deficient medium revealed that methionine could substitute for cobalt ion and promote the growth in response to its concentration. Furthermore, B12-dependent methionine synthetase was demonstrated in the cell-free extracts of this microorganism. The morphological change of R. meliloti by the additions to the medium was observed microscopically. 相似文献
16.
生物电化学系统(Bioelectrochemical systems,BESs)可将污染物的降解转化与电能紧密耦联,具有适用基质广泛、反应过程温和且效率高的特点,在环境污染治理中具有广阔的应用前景。近几年,BESs也逐渐被应用到废气处理。由于微生物和电化学过程的复合作用,BESs显示出较高的处理效率和良好的应用前景。本文在对废气类型、效果及反应器构型进行总结的基础上,还对BESs中的重要功能微生物和微生物电化学反应机理进行介绍和讨论,并对BESs在废气处理方面需要解决的问题和研究方向进行展望,以期为提高生物电化学系统的处理性能提供参考。 相似文献
17.
Peter I. Cowin Christophe T. G. Petit Rong Lan John T. S. Irvine Shanwen Tao 《Liver Transplantation》2011,1(3):314-332
The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in‐depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal‐fluorite cermets and perovskite‐based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed. 相似文献
18.
摘要:能源危机已经成为阻碍世界发展的主要问题之一,微生物燃料电池的出现为能源危机提供了新的解决途径。将植物和微藻等光合生物与微生物燃料电池整合为微生物太阳能燃料电池(MSCs),能够实现将太阳能转化为电能。微生物太阳能燃料电池不仅能够实现电能持续稳定的产生,而且在污水处理,生物柴油加工以及中间代谢物生产等方面具有广阔的应用前景。本文从光合生物在微生物燃料电池中的作用的角度出发,在参考大量文献的基础上对微生物太阳能电池进行较为全面的综述,并评述其中的优点及不足之处,最后对微生物燃料电池面临的挑战及研究需求做简要分析。旨在为未来微生物太阳能燃料电池的实际应用提供参考。 相似文献
19.
Lemuel B. Wingard Ching Hao Shaw James F. Castner 《Enzyme and microbial technology》1982,4(3):137-142
In the past 20 years, inorganic fuel cells have been transformed from novelty devices to practical energy transfer-energy storage units. However, the advantage of the high operating efficiency afforded by these fuel cells is partially offset by (a) the limited viability and high cost of the catalysts, (b) the highly corrosive electrolytes, and (c) the elevated operating temperatures. The possibility exists to reduce some of these problems through the development of bioelectrochemical fuel cells. Such biological/electrochemical systems incorporate either microorganisms or enzymes as an active component within the specified electrode compartments. Recent studies with microorganisms as part of the anode compartment have been aimed at defining the mechanism of the observed electrochemical reactions. Recent investigations on the use of cell-free enzyme preparations in the electrode compartments have dealt primarily with developing methodology and defining mechanisms for enhancing the rate of electron transfer from the enzyme-cofactor active site to the solid electrode surface. Applications of this developing technology have been envisioned for analytical chemistry, medical devices, energy transfer, electrochemical synthesis, and detoxification. In this review, the theory and problems of bioelectrochemical fuel cells are described and related to research, both recent and proposed, for the practical development of this area. 相似文献