首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
研究了OMMT和LDH对LGFPP/IFR阻燃复合材料的阻燃性能及其降解动力学的影响。借助热重分析、燃烧测定、扫描电镜及其锥形量热仪等表征手段,研究不同配比下,协效阻燃剂对复合材料阻燃性能的影响。结果表明,适量协效阻燃剂的加入,可以有效提高复合材料的热解反应活化程度。TG测试表明,热解起始温度和热解最大速率温度提前,体系释放的热量使复配的协效阻燃剂分解促使体系成炭,形成较为致密的炭层屏障。F-C方法所求出的不同复配比下,复合材料体系的反应平均活化能印证这一结果,表明协效阻燃剂的加入影响体系的降解反应的活跃程度以及阻燃性能。  相似文献   

2.
采用聚磷酸铵(APP)、三聚氰胺氰脲酸盐(MC)和聚苯醚(PPO)复配制备膨胀阻燃剂(IFR),与阻燃协效剂间苯二酚双(二苯基磷酸酯)(RDP)进行聚乙烯(PE)阻燃。借助氧指数、垂直燃烧测试,探讨IFR与阻燃协效剂RDP间的协效性,研究RDP不同添加量对IFR阻燃复合材料燃烧性能的影响,并对其力学性能进行测试。利用TG,DTG热分析技术对协效性进行验证。结果表明:RDP与IFR具有阻燃协效作用,RDP的协效性主要在热分解的第一阶段发挥作用,可催化APP提前分解,RDP的加入降低了热分解过程的热释放量,促进了多孔泡沫炭层的形成,并显著提高材料的残炭量;当RDP的添加量为5%(质量分数)时,氧指数(LOI)达到最大值31,并通过UL94V-0级。可见RDP与APP/MC/PPO阻燃剂复配可大幅提高PE的抗燃烧性能。  相似文献   

3.
采用熔融共混法制备了聚丙烯(PP)/磷酸锆(OZrP)膨胀型阻燃材料,热重分析表明添加OZrP的阻燃体系成炭量有所增加。当PP基体中含有25%膨胀型阻燃剂(IFR)时,复合材料的氧指数为33,垂直燃烧测试为UL-94V-1级别,当保持添加剂总量不变时,添加3%OZrP到PP/IFR体系中,氧指数增加到37,垂直燃烧达到V-0级别。IFR与OZrP间存在协效作用,合适的添加比例有利于提高复合材料的阻燃性能。  相似文献   

4.
研究了含铁层状复合氢氧化物(LDH)对膨胀阻燃聚丙烯体系的抗滴落协效作用。采用水热法制备了镁铝LDH(MgAl-LDH)、镁铝铁LDH(MgAlFe-LDH)及镁铁LDH(MgFe-LDH),并采用XRD、FT-IR、SEM的方法对3种LDH进行了表征。采用熔融共混法制备了聚丙烯(PP)/膨胀阻燃剂(IFR)/LDH复合材料,通过极限氧指数、UL94垂直燃烧测试、热失重分析考察了阻燃复合材料的抗滴落性能、热稳定性,采用扫描电镜(SEM)表征了残炭的形貌结构。UL94垂直燃烧测试表明,含Fe3+的LDH,可以显著改善PP/IFR体系的抗滴落性能,添加0.8%(质量分数)的比例,达成UL94V-0(1.6mm)的阻燃剂添加量由23%降至21%。热失重分析表明,各LDH均可催化PP/IFR体系的热降解,同时促进其成炭,从而增强了其在高温区域的热稳定性;其中MgAlFeLDH对材料热稳定性的影响要优于MgFe-LDH,说明LDH中Fe3+有一合适的比例范围,过量的Fe3+则起到反作用。炭层SEM分析表明,各LDH均可改善PP/IFR体系的炭层质量,含Fe3+的LDH协效体系,炭层刚性增强,这可解释其抗滴落的原因。  相似文献   

5.
以三(2-羟乙基)异氰脲酸酯与对苯二甲酸为原料,通过熔融聚合反应,在无溶剂条件下制备出异氰酸酯类化合物(TT1),采用核磁氢谱、红外光谱、元素分析对TT1结构进行表征,通过热重对TT1的热稳定性进行测定。将TT1与结晶II-型聚磷酸铵(APP-II)按照不同比例复配得到膨胀型阻燃剂(IFR),将IFR添加到聚丙烯(PP)中,得到PP/IFR阻燃复合物。通过氧指数、UL-94垂直燃烧、锥形量热测试对PP/IFR复合物的阻燃及燃烧性能进行评定,通过TG对其热稳定性进行研究,以扫描电镜观测阻燃复合物燃烧后生成的炭层微观结构。测试结果表明,TT1和APP存在协效作用,复配的膨胀阻燃剂IFR对PP具有优良的阻燃效果。当IFR添加量为25%(质量分数,下同)时,PP/IFR的氧指数达到32.3%,UL-94垂直燃烧达到V-0级(样条厚3.0mm),且阻燃复合材料燃烧中热释速率明显减缓。  相似文献   

6.
以实验室自制的无机纳米粒子镁铝锌镧碳酸根型层状双羟基氧化物(Mg Al Zn La-CO3LDHs)为协效剂,以聚磷酸铵(APP)和三聚氰胺(MA)为复配膨胀阻燃剂(IFR),与聚丁二酸丁二醇酯(PBS)熔融共混制备了PBS膨胀阻燃体系;利用锥形量热仪在25 k W/m2的热辐射条件下,研究了Mg Al Zn La-CO3LDHs对PBS膨胀阻燃体系动态燃烧行为的影响。结果表明,Mg Al Zn La-CO3LDHs的加入不仅明显降低了PBS膨胀阻燃体系的热释放速率(HRR)、烟生成速率(SPR)、质量损失速率(MLR),而且CO的释放量也得到了很好的控制,提高了体系的火灾性能指数(FPI)。Mg Al Zn La-CO3LDHs明显抑制了PBS膨胀阻燃体系的动态燃烧行为,同时表现出与膨胀阻燃剂良好的协效作用。  相似文献   

7.
无卤阻燃PES热熔胶的制备与阻燃性能   总被引:1,自引:0,他引:1  
以聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)组成的膨胀阻燃体系(IFR)作为阻燃剂,以4A分子筛作为协效剂,制备了无卤阻燃共聚酯(PES)热熔胶。研究了IFR对PES阻燃性能的影响及4A分子筛的协效作用。结果表明,少量4A分子筛可促进IFR的阻燃作用。IFR添加量为30%时,阻燃PES氧指数达30.7%,垂直燃烧达V-0级,最大热释放速率大幅降低;加入3%的4A分子筛,氧指数达35.1%。热重分析(TG)、扫描电镜(SEM)及X射线光电子能谱(XPS)结果表明,少量4A分子筛可催化IFR酯化反应,促进体系形成致密炭层,高温时4A分子筛分解并参与成炭反应,稳定炭层。  相似文献   

8.
利用三聚氰胺聚磷酸盐(MPP)和笼状季戊四醇磷酸酯(PEPA)的阻燃协效作用,复配成膨胀型阻燃剂(IFR)对聚丙烯(PP)/稻壳(RH)复合材料进行阻燃。研究了MPP与PEPA复配比例对PP/RH复合材料阻燃性能的影响。采用垂直燃烧(UL-94)和极限氧指数(LOI)研究了阻燃PP/RH复合材料的阻燃性能,采用热重分析研究阻燃PP/RH复合材料的热分解过程,采用扫描电镜(SEM)观察阻燃PP/RH复合材料燃烧后炭层的形貌。结果表明:当MPP/PEPA总用量为20%(wt%,质量分数),PEPA和MPP的质量分数比为1∶4时,阻燃PP/RH复合材料的LOI值为29.7%,垂直燃烧UL-94通过V-0级,PP/RH复合材料的拉伸强度和弯曲强度分别增加了42.3%和53.6%。热重结果表明:MPP/PEPA复配能够延缓PP/RH体系中PP的分解,并提高了材料的成炭性,使PP/RH复合材料800℃下的残炭率由16.3%提高到了30.3%,残炭率升高了14.0%。通过SEM观察得到:两者复配使PP/RH复合材料燃烧后形成了致密均匀的多孔炭层,从而提高了PP/RH复合材料的阻燃性能。  相似文献   

9.
以聚磷酸铵(APP)和季戊四醇(PER)为原料组成的膨胀阻燃剂(IFR),以热塑性聚氨酯弹性体(TPU)为聚合物成炭剂,采用熔融共混法对聚丁二酸丁二醇酯(PBS)进行阻燃改性,并考察IFR分布位置对PBS/TPU共混物阻燃性能的影响。通过极限氧指数(LOI)、垂直燃烧、锥形量热分析、热重分析、流变性能测试和扫描电子显微镜(SEM)等对PBS/TPU/IFR阻燃复合材料进行了测试与表征。结果表明:成炭剂TPU的加入,可显著地提高PBS/IFR共混体系的阻燃性能,如当体系中不含TPU时,IFR含量为20%时,PBS/IFR共混体系的LOI为20.0%,UL 94垂直燃烧等级为无等级;而当体系中加入TPU后,不管IFR分布位置如何,其LOI可达28%左右,UL 94垂直燃烧等级为V-2。在IFR含量为25%时,IFR的分布位置对阻燃性能也有影响,当IFR直接分布于PBS相时,其UL 94垂直燃烧等级为V-0,优于IFR分布于TPU相的V-2级。  相似文献   

10.
研究了复合金属氧化物(LDHO)对膨胀阻燃聚丙烯体系(PP/IFR)的协效作用。以层状复合氢氧化物(LDH)为前驱物通过焙烧法制备了2种LDHO,分别为镁铝LDHO(MgAl-LDHO)、镁铝铁LDHO(MgAlFe-LDHO),并通过X射线衍射对LDH和LDHO进行了表征,采用熔融共混法制备了PP/IFR/LDHO复合材料,通过极限氧指数(LOI)、UL94垂直燃烧、锥形量热等方法考察了复合材料的阻燃性能。结果表明,2种LDHO均可以提高PP/IFR体系的氧指数,并使最高热释放速率(PHRR)大幅度降低,其中MgAl-LDHO可使PHRR降低71%;热重分析表明,LDHO的加入提高了PP/IFR体系的分解温度及残炭在高温区的热稳定性,从而提高了体系热稳定性能。采用扫描电镜观察了残炭的形貌结构,发现添加LDHO后炭层更加致密、坚实,表明通过改善PP/IFR炭层的质量,LDHO起到了协效阻燃的作用。  相似文献   

11.
利用微胶囊红磷(MRP)和聚苯醚(PPO)来提高高抗冲聚苯乙烯(HIPS)的阻燃性能, 通过熔融共混法制备了一系列不同组成的MRP-PPO/HIPS复合材料。采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能。研究表明, 阻燃剂用量相同时, 在HIPS基体中同时加入MRP和PPO得到的复合材料比单独加入MRP或PPO得到的复合材料具有更好的阻燃性能。当MRP-PPO/HIPS的质量比为10:20:70时, 复合材料的氧指数为23.9%, 水平燃烧级别达到FH-1级, 垂直燃烧级别达到FV-0级, 阻燃性能达到最佳。MRP用量过多时, 复合材料的阻燃性能下降。研究认为, PPO和MRP对HIPS具有较强的协同阻燃作用。两者以适当比例并用时能够使复合材料在燃烧时的热释放速率和燃烧热大幅度减小, 降低了气相燃烧区的温度, 起到气相阻燃作用。同时, 复合材料在热分解和燃烧时能够生成连续和致密的炭层, 抑制了燃烧过程中的热量传递和物质交换, 起到凝聚相阻燃作用。因此, 复合材料的阻燃性能显著改善。  相似文献   

12.
Halogen-free flame retardant silicone rubber (SR) composites, using magnesium hydroxide sulfate hydrate (MHSH) whiskers as flame retardant have been prepared by a two-roll mill. Moreover, microencapsulated red phosphorus (MRP) was used as a synergist. Mechanical tests were performed to determine the tensile strength, elongation at break, and shore hardness of the composites. The morphology of fracture surface was observed by environmental scanning electron microscopy (ESEM). The results showed MHSH slightly reduced the tensile strength of the composites, but had obvious influence on the elongation at break. Meanwhile, Shore A hardness presented uptrend with increasing MHSH content. The addition of vinyl silicone fluid (VSF) could improve the compatibility of the MHSH whiskers in SR matrix, and therefore improved the mechanical properties of composites. The flammability properties of composites were investigated by limited oxygen index (LOI), UL-94 tests, and cone calorimetry experiments. It is found that MHSH whiskers can effectively improve the flame retardancy of SR composites due to the endothermic degradation of MHSH whiskers accompanied with the release of water vapor, and the formation of fibrous magnesia acting as a barrier layer. The incorporation of MRP in SR/MHSH whiskers system had a synergic fire retardant effect in the condensed and gas phase. In addition, thermogravimetric analysis (TGA) indicated the presence of MRP enhanced thermal stability of the SR/MHSH composites at higher temperature range, and remarkably promoted char residue yield.  相似文献   

13.
系统研究了碱式硫酸镁晶须(MHSH)对低密度聚乙烯(LDPE)性能的影响.实验结果表明,复合材料的拉伸强度、热氧化稳定性、阻燃性能和热变形温度随着MHSH含量的增加而显著提高.作为增强阻燃无机纤维,MHSH具有广阔的应用前景.  相似文献   

14.
一种膨胀阻燃PP体系及其燃烧性能   总被引:1,自引:0,他引:1  
制备了一种阻燃聚丙烯/膨胀阻燃剂(IFR)/蒙脱土(MMT)膨胀阻燃体系,研究了不同阻燃组分含量对体系阻燃性能的影响。结果表明,阻燃剂总添加量为30%,其中的成炭剂和聚磷酸铵(APP)的配比为1∶2时,体系的极限氧指数为29%,垂直燃烧试验(UL-94)达到V-2级;而在上述体系中添加0.5%的MMT时,体系的LOI提高到31%,垂直燃烧试验(UL-94)通过V-0级,表现出较好的协同阻燃效果。采用扫描电境(SEM)和红外光谱(FT-IR)对体系的固相残炭进行了观察和分析,探讨了可能的阻燃机理。  相似文献   

15.
用介孔分子筛(MCM-41)和Cr_2O_3协同膨胀型阻燃体系(IFR)对天然橡胶(NR)进行阻燃。为研究MCM-41和Cr_2O_3的阻燃协同作用,使用不同组分的两种协效剂协同IFR阻燃天然橡胶。对阻燃体系分别进行氧指数测试、热重分析、锥形量热分析、拉伸测试和残炭扫描分析。研究结果表明:天然橡胶单纯添加IFR时,其力学性能大幅下降,热学性能也没有显著提升。然而随着Cr_2O_3和MCM-41添加量的增加,橡胶基体的拉伸强度和断裂伸长率均有所改善,在IFR添加量为36%(与天然橡胶的质量比)、MCM-41添加量为1%,Cr_2O_3为3%时,IFR-MCM-41-Cr_2O_3复合阻燃剂的阻燃效果最好,热释放速率峰值和热释放总量均明显下降,IFR-MCM-41-Cr_2O_3/NR复合材料燃烧后,炭层发泡均匀且致密,极限氧指数(LOI)可以达到26.5%,垂直燃烧(UL-94)为V-0级。  相似文献   

16.
利用超声法制备偏硼酸根离子改性ZnMgAl层状双氢氧化物(B-LDHs),将其添加到聚氨酯弹性体(PUE)中制得PUE复合材料;通过锥形量热及烟密度研究了B-LDHs对PUE复合材料阻燃抑烟性能的影响,并通过复合材料的热失重、残炭的拉曼光谱及X射线光电子能谱分析其原因。结果表明,当B-LDHs的质量分数达到3%时,PUE复合材料的最大热释放速率及最大烟密度值相比于纯PUE的分别降低了59%和39%,表现出良好的阻燃抑烟性;这主要是由于BLDHs片层结构的物理阻隔作用,及其受热分解成的金属氧化物使炭层更加致密;另外,硼酸盐受热分解时能形成玻璃态膨胀层,隔绝氧气与热的传播,抑制可燃气体的扩散,提高复合材料受热分解时的残炭率及石墨化碳的形成,使得残炭的抗热氧化能力提高。  相似文献   

17.
采用熔融共混法,以聚磷酸铵(APP)、季戊四醇(PER)为原料组成的膨胀阻燃剂(IFR),制备了乙烯-醋酸乙烯共聚物/聚酰胺6/IFR(EVA/PA6/IFR)阻燃复合材料,并研究了增容剂EVA-g-MAH对EVA/PA6阻燃合金阻燃性和力学性能的影响。通过极限氧指数、垂直燃烧、熔融指数、力学性能、热重分析和扫描电子显微镜等手段对EVA/PA6阻燃合金进行了性能测试与表征。结果表明:随着EVA-g-MAH用量的增加,EVA/PA6阻燃合金的极限氧指数稍有降低,但当EVA-g-MAH质量分数为10%时,垂直燃烧可达UL 94V-0级;拉伸强度和断裂伸长率随着增容剂含量的增加而逐渐升高。热重分析结果表明,增容剂可提高EVA/PA6阻燃合金的热稳定性。  相似文献   

18.
以氢氧化镁(MH)、氢氧化铝(ATH) 和微胶囊红磷(MRP) 为无卤阻燃剂, 高抗冲聚苯乙烯(HIPS) 树脂为聚合物基体, 通过熔融共混法制备了一系列不同组成的MH-ATH-MRP/HIPS复合材料。采用水平燃烧、垂直燃烧、氧指数、锥形量热分析、高温热分解实验等方法研究了复合材料的阻燃性能。结果表明, 阻燃剂用量相同时, 在HIPS基体中同时引入MH和ATH得到的复合材料比单独加入MH或ATH得到的复合材料具有更好的阻燃性能。当MH-ATH/HIPS的质量比为70:30:100时, 复合材料的水平燃烧级别达到FH-1级, 氧指数为25.2%, 但垂直燃烧无级别。在上述体系中加入极少量的MRP(占复合材料的质量分数为2.9%)就可使复合材料的火灾性能指数(FPI) 提高85%, 燃烧过程中热量释放和质量损失更慢、成炭能力明显增强, 垂直燃烧级别达到FV-0级。当MH-ATH-MRP/HIPS的质量比为21:9:12:100时, 复合材料的各项阻燃性能达到最佳, 可以大幅度减少阻燃剂的用量。MH、ATH和MRP对HIPS具有非常显著的协同阻燃作用。同时加入MH和ATH时不仅可以在更宽的温度范围内抑制HIPS的升温和分解, 而且能够在更宽的温度范围内相继释放出水蒸气稀释氧气和可燃气体的浓度, 从而起到协同阻燃作用。加入MRP后复合材料的成炭能力大大增强, 进一步改善了凝聚相阻燃的效果, 因此阻燃性能显著提高。  相似文献   

19.
环氧树脂/聚磷酸铵复合材料的阻燃性能与热降解行为   总被引:1,自引:0,他引:1  
利用环氧树脂(EP)成炭能力,引入聚磷酸铵(APP)以提高其阻燃性能。当APP质量分数为9%时,EP/APP氧指数达30.5%,垂直燃烧性能通过V-0级。相比EP,EP/APP的热释放峰值与总热释放均有所下降。此外,利用热失重-红外联用设备研究了EP以及EP/APP的热降解行为并解释相关机理:EP在高温下会释放CO、甲醇等易燃性气体,剧烈燃烧并放出大量的热;APP在低温阶段的热裂解产物会催化EP的降解,但在高温下EP/APP却有热稳定性优异的炭层形成,在火灾中此炭层会覆盖在基体表面保护下部材料以免其遭到进一步的破坏。  相似文献   

20.
将三聚氰胺聚磷酸盐(MPP)和次磷酸铝(AP)阻燃剂添加到木纤维/酚醛树脂(WF/PR)复合材料中,通过人造板热压工艺技术制备阻燃高密度纤维板(MPP-AP-WF/PR)复合材料,探索了MPP和AP组成复配阻燃剂时,MPP-AP-WF/PR复合材料达到最佳阻燃性能时MPP与AP的最佳质量比.采用弯曲强度、吸水厚度膨胀率...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号