首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calpain is a ubiquitous calcium-dependent cysteine protease, whose cytoskeletal protein substrates suggest that it may be important in neuronal differentiation. Lead (Pb2+) is known to substitute for Ca2+ in a variety of intracellular processes, and interferes with the development of hippocampal neurons in vitro. We found that free Pb2+ at 1 nM does not activate calpain in the absence of Ca2+. Pb2+ inhibited the activity of calpain; the degree of calpain inhibition was dependent on an interaction between concentrations of both Ca2+ and Pb2+. In the presence of 1 microM free Ca2+, 10 pM free Pb2+ reduced calpain activity, but in the presence of 100 microM free Ca2+, 1 nM free Pb2+ failed to inhibit calpain. This provides evidence that Pb2+ competes for the Ca2+ binding sites on calpain. In the presence of 40 microM free Ca2+, 1 nM free Pb2+ significantly reduces Vmax without altering Km, suggesting that Pb2+ acts as a noncompetitive inhibitor of calpain. Inhibition of calpain is one mechanism by which Pb2+ may interfere with neuronal development.  相似文献   

2.
Describes interim results of a study examining the effectiveness of parent-child interaction therapy (PCIT) with families of preschool-age children with oppositional defiant disorder. Following an initial assessment, 64 clinic-referred families were randomly assigned to an immediate treatment (i.t.) or a wait-list control (WL) condition. Results indicated that parents in the IT condition interacted more positively with their child and were more successful in gaining their child's compliance than parents in the WL condition. In addition, parents who received treatment reported decreased parenting stress and a more internal locus of control. Parents in the IT group reported statistically and clinically significant improvements in their child's behavior following PCIT. All families who received treatment reported high levels of satisfaction with both the content and process of PCIT. Preliminary 4-month follow-up data showed that parents maintained gains on all self-report measures.  相似文献   

3.
The rostral ventral medulla has been shown to consist of three distinct subregions: the midline or raphé region, the lateral paragigantocellular-gigantocellular region and the rostro-ventrolateral reticular nucleus. All three regions have been shown to contribute to central vaso-regulation and to project towards sympathetic preganglionic neurons of the thoracic spinal cord. Therefore it is of particular interest to describe the interconnections between the three regions and to see if local afferents reach cells which have been implicated in the regulation of descending inputs. Following injections of the anterograde tract tracer Phaseolus vulgaris leucoagglutinin into the lateral paragigantocellular nucleus or the rostroventrolateral reticular nucleus, labelled axons were traced into the medullary raphé nuclei and the contralateral rostral ventrolateral medulla. Efferents originating from both regions innervated the raphé pallidus, raphé obscurus and raphé magnus. However the distribution of terminals originating from the two regions was different in the contralateral ventrolateral medulla oblongata. The data indicate that the connection between the ipsi- and contralateral equivalents of both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus are stronger than the cross-connection between the ipsi- and contralateral parts of the two different regions. In the second part of the study, the existence of direct projections from the rostroventrolateral reticular nucleus and the lateral paragigantocellular-gigantocellular region onto serotonin-immunogold-labelled cells of the ventromedial medulla were investigated. The correlated light and electron microscopic analysis revealed direct synaptic contacts between axons originating from both the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus, and serotonin-immunoreactive cells of the raphé obscurus and raphé pallidus. The results of the present light microscopic tract-tracing study revealed a different pattern of the intramedullary projection of the lateral paragigantocellular-gigantocellular region and the rostroventrolateral reticular nucleus. These data are in support of the proposed parcellation of the two cytoarchitectonically different areas of the rostral ventrolateral medulla into two functionally distinct subdivisions. Furthermore, the direct anatomical connection revealed in the present study between cells of the rostral ventrolateral and ventromedial medulla oblongata indicates the possibility that vasoregulatory effects of some cells of the rostral ventrolateral medulla oblongata might be executed via direct projections onto serotonin-immunoreactive cells of the medullary raphé nuclei.  相似文献   

4.
While it is well documented that locus coeruleus neurons are potently activated by foot-pinch or sciatic nerve stimulation, little is known about the circuit producing this sensory response. Previous work in our laboratory has identified the medullary nucleus paragigantocellularis as a major excitatory afferent to the locus coeruleus. Here, we use local microinjections into the paragigantocellularis to test whether this nucleus is a link in the pathway mediating the activation of locus coeruleus neurons by subcutaneous footpad stimulation, or footshock, in anesthetized rats. Lidocaine HCl microinjected into the paragigantocellularis reversibly attenuated footshock-evoked activation of 50 out of 56 locus coeruleus cells, with responses in 20 cells completely blocked. Microinjections of GABA into the paragigantocellularis reduced the footshock-evoked responses of 17 out of 27 locus coeruleus cells (seven complete blocks); microinjections of the GABAB agonist baclofen had no effect (0 out of 11 cells blocked). Microinjections of a synaptic decoupling cocktail of manganese and cadmium also attenuated locus coeruleus activation in eight out of nine cells with two complete blocks. With each agent, the most effective injection placement for complete blockade of responses was the ventromedial paragigantocellularis; injections bordering this region attenuated responses, while those outside of the paragigantocellularis (dorsal medullary reticular formation, nucleus tractus solitarius, or facial nucleus), or vehicle injections, were ineffective. These results are consistent with previous findings that pharmacologic blockade of paragigantocellularis-evoked locus coeruleus activity also blocks footshock-evoked responses of locus coeruleus neurons [Ennis and Aston-Jones (1988) J. Neurosci. 8, 3644-3657], and support the view that this somatosensory response, and perhaps other sensory-evoked responses of locus coeruleus neurons, involve the nucleus paragigantocellularis.  相似文献   

5.
We investigated the hypothesis that stimulation of metabotropic excitatory amino acid receptors in the ventrolateral medulla evokes cardiovascular responses. Thus, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD], a selective agonist of metabotropic excitatory amino acid receptors, was microinjected into the rostral or caudal ventrolateral medulla of halothane-anesthetized Sprague-Dawley rats. Microinjections of (1S,3R)-ACPD (100 pmol-1 nmol) into the rostral ventrolateral medulla produced dose-dependent increases in mean arterial pressure (+20 +/- 4 mm Hg by 100 pmol and +35 +/- 2 mm Hg by 1 nmol, p < 0.01 versus artificial cerebrospinal fluid) and integrated splanchnic sympathetic nerve activity (+17 +/- 3% and +46 +/- 4%, respectively, p < 0.01), whereas (1S,3+)-ACPD microinjected into the caudal ventrolateral medulla decreased mean arterial pressure (-28 +/- 2 mm Hg by 100 pmol and -48 +/- 6 mm Hg by 1 nmol, p < 0.01 versus artificial cerebrospinal fluid) and splanchnic sympathetic nerve activity (-24 +/- 4% and -49 +/- 5%, p < 0.01). The blockade of ionotropic excitatory amino acid receptors by the combined injection of 2-amino-7-phosphonoheptanoic acid (200 pmol) and 6,7-dinitroquinoxaline-2,3-dione (200 pmol), which effectively blocked the responses elicited by either N-methyl-D-aspartate (20 pmol) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (5 pmol), failed to affect the responses evoked by either (1S,3R)-ACPD (100 pmol) or L-glutamate (2 nmol) microinjected in the rostral and caudal ventrolateral medulla. These results suggest that metabotropic receptors are present and mediate cardiovascular responses evoked by L-glutamate injections into the rostral and caudal ventrolateral medulla.  相似文献   

6.
The purpose of the present study was to investigate the modulatory actions of adrenoreceptor agonists on N-methyl-D-aspartate (NMDA)-induced pressor effect in rostral ventrolateral medulla (RVLM). These drugs were locally applied into RVLM of urethane-anesthetized Sprague-Dawley rats through multibarrel pipettes. Microinjection of NMDA increased the arterial pressure, an effect which was abolished by pretreatment with clonidine, whereas neither the beta-adrenergic agonist isoproterenol nor the alpha 1-adrenergic agonist phenylephrine did alter this pressor response. Previous experiments demonstrated that clonidine binds to noradrenergic alpha 2 and imidazoline receptors in the RVLM. Norepinephrine, which has high affinity for the alpha 2 receptor and low affinity to the imidazoline receptor, partially antagonized NMDA-induced hypertension. On the other hand, administration of selective imidazoline receptor antagonist idazoxan partially reversed clonidine-mediated antagonism of NMDA. Taken together, these results suggest that clonidine may modulate the excitatory amino acid-induced pressor response through noradrenergic alpha 2 and imidazoline receptors in the RVLM.  相似文献   

7.
A simple and sensitive HPLC method for determination of metronidazole in human plasma has been developed. A step of freezing the protein precipitate allowed an efficient separation of aqueous and organic phases minimizing the noise level and improved therefore the limit of quantitation (10 ng ml(-1) using 1 ml of plasma sample). The separation of compounds was performed on a RP 18 column with acetonitrile-aqueous 0.01 M phosphate solution (15:85, v/v) as mobile phase. Detection was performed by UV absorbance at 318 nm. Metronidazole was well resolved from the plasma constituents and internal standard. An excellent linearity was observed between peak-height ratios plasma concentrations over a concentration range of 0.01 to 10 microg ml(-1). Within-day and between-day precision (expressed by relative standard deviation) and accuracy (mean error in per cent) did not exceed 4% between 1 and 10 microg ml(-1) and 8.3 and 7.2% respectively for the limit of quantitation. The method is suitable for bioavailability and pharmacokinetic studies in humans.  相似文献   

8.
Evidence is emerging that oestrogen, besides acting via classical nuclear receptors, can rapidly influence the physiology of nerve cells through other mechanisms. Oestrogens have been shown to modulate the differentiation and function of embryonic midbrain dopaminergic neurones by stimulating neurite outgrowth, expression of tyrosine hydroxylase mRNA, dopamine uptake and release in spite of the fact that dopaminergic cells in the prenatal midbrain do not express the classical oestrogen receptor. This study therefore intended to unravel possible signal transduction pathways activated by oestrogen which might be associated with the above oestrogen effects. As a physiological second-messenger mechanism, we studied the influence of oestrogen on fluctuations of intracellular Ca2+ levels [Ca2+]i by microspectrofluorimetry of the Ca2+-sensitive indicator Fura-2, in primary cultures from embryonic mouse midbrains. 17Beta-estradiol (10 nM-1 pM) but not 17alpha-estradiol increased [Ca2+]i within 1-3 s in a dose-dependent way. Removal of extracellular Ca2+ abrogated K+-stimulated Ca2+ rise but did not affect 17beta-estradiol stimulation. Pretreatment of cells with thapsigargin (1 microM, 10 min), an inhibitor of Ca2+-pumping ATPases in the endoplasmic reticulum, abolished the 17beta-estradiol effect but not the K+-stimulated [Ca2+]i rise. Oestrogen effects on [Ca2+]i were completely mimicked by using a membrane-impermeant oestrogen-BSA construct. In order to identify oestrogen-sensitive cells, some cultures were subsequently immunostained for microtubule-associated protein II, tyrosine hydroxylase, or GABA. All oestrogen-sensitive cells were immunocytochemically characterized as neurones, and about half of these responsive neurones was found to be dopaminergic or GABAergic. These results demonstrate that 17beta-estradiol is capable of rapidly modulating physiological parameters of developing midbrain neurones by directly interacting with specific membrane binding sites coupled to a signal transduction mechanism that causes a calcium release from intracellular Ca2+ stores. It is suggested that oestrogen effects on differentiation and function of midbrain dopaminergic neurones are mediated by intracellular Ca2+ signalling.  相似文献   

9.
The rostral ventrolateral medulla (RVLM) contains barosensitive, bulbospinal neurons that provide the main supraspinal excitatory input to sympathetic vasomotor preganglionic neurons. However, the phenotype of the critical RVLM cells has not been conclusively determined. The goal of the current study was to identify the proportion of electrophysiologically defined, putative, presympathetic RVLM neurons that are C1 cells. We used a juxtacellular labeling technique to individually fill spontaneously active, barosensitive, bulbospinal RVLM neurons with biotinamide following electrophysiological characterization in chloralose-anesthetized rats. To determine whether these neurons could be classified as C1 cells, the biotinamide-labeled cells were processed for detection of tyrosine hydroxylase. The majority of barosensitive bulbospinal RVLM neurons were tyrosine hydroxylase immunoreactive (TH-ir; 28 of 39). All of the barosensitive bulbospinal RVLM neurons with axonal conduction velocities in the C fiber range (<1 m/second) were TH-ir (n = 16), whereas faster conducting cells (1 to 7 m/second) were either lightly TH-ir (n = 12) or not detectably TH-ir (n = 11). Adjacent respiratory-related RVLM units labeled with biotinamide were not detectably TH-ir (n = 10). To verify that TH-ir cells were indeed adrenergic, a subset of barosensitive bulbospinal cells labeled with biotinamide were examined for phenylethanolamine N-methyltransferase immunoreactivity (PNMT-ir). Three slowly conducting cells had detectable PNMT-ir, and two fast-conducting cells had no detectable PNMT-ir. These results indicate that the majority of bulbospinal RVLM neurons with putative sympathoexcitatory function are C1 cells.  相似文献   

10.
Microinjection of angiotensin II and III into the rostral ventrolateral medulla of anesthetized barodenervated rabbits elicited in both cases pressor responses, which were of similar magnitude and time course. The responses to angiotensin II and III were either unchanged or increased in the presence of compounds which inhibit their degradation to shorter length peptides. The results indicate that both angiotensin peptides are independently capable of eliciting pressor responses in the rostral ventrolateral medulla.  相似文献   

11.
The retrogradely-transported tracer, rhodamine-tagged microspheres was injected into the pressor region of the rostral ventrolateral medulla (RVLM) to enable detection of paraventricular neurons in the hypothalamus that project to the RVLM. The protein, Fos, was detected immunohistochemically and used to highlight neurons that were activated by hypotension (-16+/-5 mmHg) induced by diazoxide (30 mg/kg s.c.). Compared to controls, Fos production was increased by three-fold in the parvocellular paraventricular nucleus but there was no significant increase in the number of retrogradely-labelled cells that expressed Fos. The results suggest paraventricular nucleus (PVN) neurons projecting to the RVLM are not activated by hypotension.  相似文献   

12.
Endothelin (ET) is a potent vasoconstrictor which has also been proposed to act as a neuromodulator. We have investigated the action of ET-1 on neurones in vivo, using c-fos as a marker of neuronal activation. Intrastriatal injection of ET-1 caused seizures and barrel rolling which were prevented by pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and attenuated by the nitric-oxide synthase inhibitor N omega-nitro-L-arginine (L-NNA). In association with these behaviours, a dramatic increase in c-fos mRNA expression was seen in the cerebral cortex. This increase was blocked by both MK-801 and L-NNA. We suggest that ET-1 modulates the activity of cortical afferents to the striatum, and causes seizures via an NMDA receptor-dependent mechanism.  相似文献   

13.
Noradrenaline and adrenergic agonists were tested on pacemaker-like and silent neurons of the rat rostral ventrolateral medulla using intracellular recording in coronal brainstem slices as well as in punches containing only the rostral ventrolateral medullary region. Noradrenaline (1-100 microM) depolarized or increased the frequency of discharge of all cells tested in a dose-dependent manner. The noradrenaline-induced depolarization was associated with an apparent increase in cell input resistance at low concentrations and a decrease or no significant change at higher concentrations. Moreover, it was voltage dependent and its amplitude decreased with membrane potential hyperpolarization. Noradrenaline caused a dose-related increase in the frequency and amplitude of spontaneous inhibitory postsynaptic potentials. The alpha 1-adrenoceptor antagonist prazosin (0.5 microM) abolished the noradrenaline depolarizing response as well as-the noradrenaline-evoked increase in synaptic activity and unmasked an underlying noradrenaline dose-dependent hyperpolarizing response associated with a decrease in cell input resistance and sensitive to the alpha 2-adrenoceptor/antagonist yohimbine (0.5 microM). The alpha 1-adrenoceptor agonist phenylephrine (10 microM) mimicked the noradrenaline depolarizing response associated with an increase in membrane resistance as well as the noradrenaline-induced increase in synaptic activity. The alpha 2-adrenoceptor agonists UK-14,304 (1-3 microM) and clonidine (10-30 microM) produced only a small hyperpolarizing response, whereas the beta-adrenoceptor agonist isoproterenol (10-30 microM) had no effect. Baseline spontaneous postsynaptic potentials were abolished by strychnine (1 microM), bicuculline (30 microM) or both. However, only the strychnine-sensitive postsynaptic potentials had their frequency increased by noradrenaline or phenylephrine and they usually occurred with a regular pattern. Tetrodotoxin (1 microM) eliminated 80-95% of baseline spontaneous postsynaptic potentials and prevented the increase in synaptic activity evoked by noradrenaline and phenylephrine. Similar results were obtained in rostral ventrolateral medulla neurons impaled in both coronal slices and punches of the rostral ventrolateral medulla. It is concluded that noradrenaline could play an important inhibitory role in the rostral ventrolateral medulla via at least two mechanisms: an alpha 2-adrenoceptor-mediated hyperpolarization and an enhancement of inhibitory synaptic transmission through activation of alpha 1-adrenoceptors located on the somatic membrane of glycinergic interneurons. Some of these interneurons exhibit a regular discharge similar to the pacemaker-like neurons and might, at least in part, constitute a central inhibitory link in the baroreceptor-vasomotor reflex pathway.  相似文献   

14.
N-methyl--aspartate (NMDA) receptors are often the first ionotropic glutamate receptors expressed at early stages of development and appear to influence neuronal differentiation by mediating Ca2+ influx. Although less well studied, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors also can generate Ca2+ elevations and may have developmental roles. We document the presence of AMPA and NMDA class receptors and the absence of kainate class receptors with whole cell voltage-clamp recordings from Xenopus embryonic spinal neurons differentiated in vitro. Reversal potential measurements indicate that AMPA receptors are permeable to Ca2+ both in differentiated neurons and at the time they first are expressed. The PCa/Pmonocation of 1.9 is close to that of cloned Ca2+-permeable AMPA receptors expressed in heterologous systems. Ca2+ imaging reveals that Ca2+ elevations are elicited by AMPA or NMDA in the absence of Mg2+. The amplitudes and durations of these agonist-induced Ca2+ elevations are similar to those of spontaneous Ca2+ transients known to act as differentiation signals in these cells. Two sources of Ca2+ amplify AMPA- and NMDA-induced Ca2+ elevations. Activation of voltage-gated Ca2+ channels by AMPA- or NMDA-mediated depolarization contributes approximately 15 or 30% of cytosolic Ca2+ elevations, respectively. Activation of either class of receptor produces elevations of Ca2+ that elicit further release of Ca2+ from thapsigargin-sensitive but ryanodine-insensitive stores, contributing an additional approximately 30% of Ca2+ elevations. Voltage-clamp recordings and Ca2+ imaging both show that these spinal neurons express functional AMPA receptors soon after neurite initiation and before expression of NMDA receptors. The Ca2+ permeability of AMPA receptors, their ability to generate significant elevations of [Ca2+]i, and their appearance before synapse formation position them to play roles in neural development. Spontaneous release of agonists from growth cones is detected with glutamate receptors in outside-out patches, suggesting that spinal neurons are early, nonsynaptic sources of glutamate that can influence neuronal differentiation in vivo.  相似文献   

15.
The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are important brain stem pain modulating regions. Recent evidence suggests that kappa opioids antagonize the effects of mu opioids in the RVM. However, the anatomical relationship between mu and kappa opioid receptors in PAG and RVM is not well characterized. This study examined relationships between mu and kappa opioid receptor immunoreactivity (IR) and mRNA in PAG and RVM. Brain slices were processed for either immunocytochemistry or in situ hybridization. We found considerable anatomical overlap of mu and kappa opioid IR and mRNA in the RVM and PAG. These results provide an anatomical basis for recent behavioral and electrophysiological findings in RVM, and suggest modulatory interactions between mu and kappa opioids in PAG.  相似文献   

16.
On poststress images with 99mTc-sestamibi (MIBI), increased lung uptake of the radiotracer may reflect severe or multivessel coronary artery disease. METHODS: We measured pulmonary/myocardial ratios of MIBI at standardized times on immediate poststress acquisitions and on delayed tomographic acquisitions. In 1500 sequential patients referred for rest and stress myocardial tomography, ancillary planar images were obtained 4 min postinjection at peak stress with exercise, either alone (exercise, n = 674), or after intravenous dipyridamole (dipyridamole, n = 826). RESULTS: Based on 95% confidence limits in the angiographic normals, high values for immediate acquisitions were found in 17% of dipyridamole studies and 15% of exercise studies. High values for delayed acquisitions were found in 10% of dipyridamole studies and 9% of exercise studies. For both stress modes, increased values were related (p < 0.001) to ischemic perfusion defects for immediate images, to fixed defects for delayed images, and to ventricular dilation in both cases. By logistic regression analysis, body weight and history of infarction were also minor independent determinants (p < 0.01) of delayed acquisitions. In a subset of 250 cases with angiographic correlation (163 with dipyridamole; 87 with exercise), immediate lung uptake was highly correlated with ventricular dysfunction and with coronary stenoses (p < 0.0001). Relationships were similar to those in a historic control series imaged with 201TI. Values for delayed poststress images, and for corresponding rest images, showed strong relationships to ventricular dysfunction but not to stenosis severity. CONCLUSION: The relationships of immediate lung uptake to scintigraphic and angiographic disease patterns suggest its possible diagnostic use as an indicator of stress-induced ventricular decompensation.  相似文献   

17.
18.
1. The effects of redox reagents, 5,5'-dithiobis-2-nitrobenzoic acid (DTNB) and tris(carboxyethyl)phosphine (TCEP), on anoxia-induced long-term potentiation (LTP) were investigated in CA1 hippocampal neurons using extracellular recording techniques. Experiments were performed in the presence of 0.1 mM MgCl2 and 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) to pharmacologically isolate N-methyl-D-aspartate (NMDA) receptor-mediated responses. 2. DTNB (200 microM), a thiol oxidizing reagent, reduces by 52 +/- 9% (mean +/- SE) (n = 9/9) NMDA-receptor field potentials evoked by electrical stimulation of Schaffer collaterals and this effect could not be reversed by extensive washing. Nearly the same reduction of the initial response was obtained with different concentrations of DTNB (100 and 500 microM), but the time required to reach the maximal inhibition was concentration-dependent. 3. In keeping with an earlier study oxygen and glucose deprivation for 2-3 min induced a long-term potentiation (LTP) of the NMDA receptor response (+65 +/- 16%, n = 4/6). This potentiation was reversed by DTNB (100-500 microM) (-47 +/- 18%; n = 4/4) and the initial LTP could not be restored upon extensive washing of the drug. 4. TCEP (200 microM), a reagent which reduces S-S bond, amplified the electrically evoked NMDA-receptor EPSP (+27 +/- 12%; n = 3). In addition, TCEP (200 microM), nearly completely reversed the effect of DTNB (200 microM) on anoxia-induced LTP (+56 +/- 19%; n = 3/3). Preliminary results also indicate that TCEP occlude anoxic-LTP (n = 3/4). 5. Following DTNB (200 microM) treatment, oxygen and glucose deprivation did not generate anoxic LTP and extensive washing did not restore a potentiated NMDA field potential. 6. These observations strongly suggest that the redox site of the NMDA receptor is involved in the induction and the maintenance of the anoxic LTP of the NMDA receptor-mediated response in CA1.  相似文献   

19.
OBJECTIVES: To evaluate observers' use of image-enhancement facilities and time consumption in assessing caries in radiographs taken with four digital systems. METHODS: In total, 131 extracted human premolars and molars were mounted three in a line. Radiographs were taken using four digital systems: Digora (DIG), Radio VisioGraphy (RVG), Sens-A-Ray (SAR) and Visualix (VIX), and imported into a programme with routines for adjustment of brightness, contrast and gamma curve. Sixteen images from each digital system were compressed (JPEG, irreversible compression). The 588 images were scored by six observers for approximal and occlusal caries on a five-point confidence scale using enhancement as they pleased. The programme automatically recorded any enhancement made without the observers knowing this. RESULTS: Some form of digital enhancement was used in almost all images, with the gamma curve being the most frequent. The VIX images were enhanced most followed by SAR, DIG and RVG images. The differences were significant (p < 0.01) except between DIG and SAR images. The compressed images were enhanced significantly more than their uncompressed counterparts (p = 0.02). The average time spent recording one image was 24 s. On average, significantly less time was spent with the DIG images than the other systems (p < 0.01), while there were no significant differences between the CCD-based systems (p > 0.2). There was no relationship between time spent and number of manipulations performed. CONCLUSIONS: The observers took advantage of the facilities available for enhancement of density and contrast in digital images. The potential of gamma curve manipulation requires further investigation.  相似文献   

20.
The aim of this study, conducted in anaesthetized rats, was to examine the morphology of barosensitive neurons in the rostral ventrolateral medulla and their immunoreactivity for a catecholamine synthesizing enzyme, tyrosine hydroxylase. Thirty neurons displaying inhibitory postsynaptic potentials following stimulation of the aortic depressor nerve were intracellularly labelled with Lucifer Yellow or Neurobiotin. Some of these neurons could be excited antidromically from the second thoracic segment of the spinal cord, with conduction velocities of spinal axons ranging from 1.9 to 7.2 m/s. The filled somas were found immediately caudal to the facial nucleus and ventral or ventromedial to compact formation of the nucleus ambiguus. Some dendrites reached the ventral medullary surface. Axons usually projected dorsomedially and then made a sharp rostral and/or caudal turn. The caudally projecting axon could, in some cases, be followed to the first cervical segment of the spinal cord. Seven cells issued fine axon collaterals on the ipsilateral side. These were identified mainly in two areas: in the rostral ventrolateral medulla (or immediately dorsomedial to that region), and within the dorsal vagal complex. Seven of 27 examined cells (26%) were tyrosine hydroxylase-immunoreactive and were classified as C1 adrenergic neurons. No clear relationship was found between the presence or absence of adrenergic phenotype and the morphology of filled cells. However, the amplitude of aortic nerve-evoked inhibitory postsynaptic potentials was significantly larger in tyrosine hydroxylase-positive neurons. Possible reasons for the low percentage of barosensitive cells with tyrosine hydroxylase immunoreactivity found in this study, in comparison with previously published estimates, are discussed. This is the first study describing the morphology of neurons in this part of the medulla identified as barosensitive in vivo, and directly demonstrating adrenergic phenotype in a subset of these neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号