首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 812 毫秒
1.
脉冲电镀Ni-SiC镀层及其表征   总被引:1,自引:0,他引:1  
采用脉冲电镀的方法制得Ni-SiC镀层,研究电参数和热处理温度对Ni-SiC镀层表面形貌、显微硬度及结合力的影响。结果表明:在适宜的脉冲电流作用下,镀层组织得到进一步细化,镀层中的SiC颗粒含量增加,从而获得细密、平整的镀层;热处理温度对Ni-SiC镀层的显微硬度和结合力有较大影响,当热处理温度为300 ℃,脉冲电镀制备的3种镀层显微硬度达到最大值,分别为880HV,903HV,896HV;镀层的结合力达到最大值,分别为76,78,77 N。  相似文献   

2.
采用脉冲电沉积方法制备Ni-SiC复合镀层,研究SiC纳米颗粒对Ni-SiC复合镀层的表面形貌、组织成分、显微硬度、耐磨性能及耐腐蚀性能的影响。结果表明,含有SiC纳米颗粒的复合镀层比未含SiC的表面结构更紧致,镍晶粒更细小,且镀层中SiC纳米颗粒的质量分数达到最大,为5.79%。Ni-SiC复合镀层表面与内部的显微硬度差异较小,相较于金属基体,复合镀层的显微硬度均有较大的提高。当磨损时间为10 min时,未含SiC纳米颗粒的复合镀层磨损量最多,为3.12 mg。当SiC粒子的质量浓度为3 g/L时,Ni-SiC复合镀层的平均显微硬度达到最大值,为600HV,磨损量达到最小值,为0.493 mg。Ni-SiC复合镀层在质量分数为3.5%的Na Cl溶液中的极化曲线形状相似,都没有钝化区域。当添加SiC粒子的质量浓度为3 g/L时,Ecorr向正移动达到最大值,为-0.441 V,Icorr达到最小值,为1.221×10-5A/cm2,表明Ni-SiC复合镀层的耐腐蚀性最好。  相似文献   

3.
金属镍-碳化硅纳米复合电镀工艺研究   总被引:1,自引:0,他引:1  
采用复合电镀技术在炭素结构钢板的表面上制备高硬度的Ni-SiC纳米复合镀层,研究镍-碳化硅纳米复合电镀的工艺条件。结果表明,当阴极电流密度为2.56A/dm2,镀液中纳米碳化硅粉的质量浓度为20g/L,镀液的pH值为5.0,温度为50℃时,镀层生长良好,均匀细致平滑,镀层的显微硬度可达到950HV0.2,远高于普通纯镍镀层的硬度。  相似文献   

4.
通过超声-电沉积方法,在45钢基体表面制备Ni-TiN纳米镀层。利用扫描电镜、X射线衍射仪、显微硬度及电化学工作站对Ni-TiN镀层的表面形貌、显微硬度以及耐腐蚀性能进行研究。结果表明:当超声波功率为200 W时,镀层表面颗粒组织进一步细化,且起伏较小,表面较为平整,其显微硬度达到最大值,为735.7HV;采用超声波功率为100 W和200 W制备的Ni-TiN纳米镀层,其腐蚀电流分别为1.549×10-4A/cm~2和6.368×10-5A/cm~2,TiN粒子平均粒径分别为83.1 nm和69.8 nm。  相似文献   

5.
在T8钢表面脉冲电沉积Ni-SiC镀层,用扫描电镜(SEM)、显微硬度计、X射线衍射仪(XRD)等研究电流密度对Ni-SiC镀层的表面粗糙度、内应力、显微硬度和组织结构的影响。结果表明:电流密度为6 A/dm~2时,Ni-SiC镀层表面粗糙度达到最小值(0.66μm),内应力达到最小值(120 MPa),显微硬度达到最大值(828HV);电流密度为6 A/dm~2时,Ni-SiC镀层表面颗粒尺寸较小,粗糙度较低,镀层致密性较好;Ni-SiC镀层为面心立方结构,且电流密度为6 A/dm~2时,镀层(111)晶面衍射强度较高。  相似文献   

6.
分别采用机械搅拌-直流电沉积方法、机械搅拌-脉冲电沉积方法和超声波振荡-脉冲电沉积方法制备Ni-ZrO_2复合镀层,利用扫描电镜、透射电镜和X射线衍射仪表征复合镀层的表面形貌和晶相结构,利用显微硬度计和摩擦磨损试验机检测复合镀层的显微硬度和耐磨性。结果表明:与机械搅拌-直流电沉积和机械搅拌-脉冲电沉积的复合镀层相比,超声波振荡-脉冲电沉积的复合镀层表面平整、致密,晶粒细小,平均晶粒尺寸为(50~100)nm;择优取向发生改变,在(220)晶面呈择优取向,而非(200)晶面;显微硬度明显提高,接近600HV;耐磨性改善,磨损形式为轻微磨粒磨损,磨损量降低,仅为2.29 mg。  相似文献   

7.
为提高Ni-SiC纳米镀层的耐腐蚀性能,采用射流电沉积方法,在Q235钢基体表面制备Ni-SiC纳米镀层。利用FLUENT软件仿真不同喷嘴直径对喷射镀液的速度和动能参数影响,采用扫描电子显微镜、透射电镜、X射线衍射仪和电化学工作站对不同喷嘴直径下喷射电沉积制备Ni-SiC纳米镀层的表面形貌、显微组织、腐蚀行为进行研究。当喷嘴直径为8 mm时,喷射电沉积过程镀液的射流速度和动能较其他喷嘴直径下的大,最大射流速度和动能分别为113 m/s和543 J。此参数下制备的Ni-SiC纳米镀层具有致密、均匀的表面结构,大量SiC纳米颗粒嵌入Ni-SiC纳米镀层,Ni和SiC的平均粒径分别为342 nm和73 nm。结果表明:喷嘴直径对Ni-SiC纳米镀层的腐蚀性能影响较大;当喷嘴直径为8 mm时,Ni-SiC纳米镀层具有最佳的耐腐蚀性能。适宜的喷嘴直径,可提高镀液喷射速率和动能,从而提高Ni-SiC纳米镀层的耐腐蚀性能,得到的Ni-SiC纳米镀层与其他镀层相比组织结构更致密、均匀。  相似文献   

8.
在磁场-超声复合作用下,用脉冲电沉积方法,在黄铜基体表面制备Ni-ZrO_2复合镀层,研究镀层的显微组织、结合力和耐腐蚀性能。结果表明:加入纳米ZrO_2微粒,提供更多的异质成核点,使复合镀层表面均匀致密、晶粒细化。纳米粒子添加量为10 g/L时,复合镀层晶面择优取向被抑制,晶粒生长趋于各向同性;晶粒尺寸和显微硬度分别为17.98 nm和417HV,较纯镍镀层的晶粒尺寸减小9.42%,显微硬度提高17.13%;复合镀层结合力最大,为1 913.2 MPa;极化曲线和阻抗曲线都表明复合镀层具有最好的耐腐蚀性。  相似文献   

9.
采用脉冲电沉积的方法,在20钢表面制备Ni-SiC复合镀层。利用显微硬度计和摩擦磨损试验机研究工艺参数对Ni-SiC复合镀层性能的影响规律,利用扫描电镜观察Ni-SiC复合镀层的表面形貌。结果表明,SiC粒子浓度、阴极电流密度、占空比等工艺参数对Ni-SiC复合镀层的性能和表面形貌有很大影响。当SiC质量浓度为8 g/L、电流密度为4 A/dm2、占空比为10%时,Ni-SiC复合镀层表面的颗粒相对较小,致密性好,镀层中大量均布着小颗粒的SiC粒子。  相似文献   

10.
利用化学复合镀技术在钛基表面制备了含有石墨微粒的复合镀层。通过 SEM、XRD、EDS、显微硬度仪和磨损测试等方法对镀后组织性能进行分析,讨论石墨微粒的加入对镀层结构、晶化过程及镀层性能的影响,并与 Ni-P 合金镀层进行对比。结果表明:镀态下镀层是胞粒状堆积形式、属非晶结构,石墨嵌入镀层胞状颗粒中,表面呈现鲜花团集状态;石墨微粒的加入使复合镀层晶化温度升高。晶化完成周期缩短;含有层状石墨微粒的复合镀层大大地提高了钛基表面的耐磨性,热处理后镀层中出现大量的 TiC 硬质增强相,提高了镀层硬度。400℃热处理后硬度达到1239HV0.2,是钛基体的5倍,也高于 Ni-P 合金镀层。  相似文献   

11.
采用超声波辅助电沉积法,在45钢表面制备Ni-SiC镀层,研究不同工艺参数对Ni-SiC镀层镀速的影响。采用3×6×1型BP模型对Ni-SiC镀层的镀速进行研究。结果表明:Ni-SiC镀层中SiC颗粒的平均粒径为158 nm,镍晶粒的平均粒径为714 nm;BP模型预测值曲线与实验值曲线吻合度较高,其最大相对误差为2.4%,相关系数为0.998。该BP模型具有很好的自适应能力。  相似文献   

12.
对铸铁件进行镍-磷化学镀以提高其耐蚀性能。对镀层的成分分布、表面形貌、镀层硬度及硬度随回火温度的变化、镀层与基体的结合强度及镀层的耐蚀性进行了研究。结果表明:镀层磷含量为6%~8%,属中磷镀层;镀后,试样表面硬度得到大的提高,热处理可进一步提高表面硬度。镀层均匀、致密、孔隙率低且与基体结合牢固;划痕试验中当施加的法向力超过60N时,涂层与基体间才有裂纹产生:电化学极化试验结果表明,化学镀后,铸铁的抗腐蚀能力获得很大的提高,腐蚀率从6.337E-2mm/a减少到1.914E-2mm/a。  相似文献   

13.
用磁力搅拌-化学沉积的方法,在45钢表面沉积Ni-P-SiC镀层。研究了SiC微粒添加量、搅拌速率以及镀液温度等对镀层硬度和表面形貌的影响,借助扫描电子显微镜(SEM)对镀层进行观察。结果表明:当SiC的质量浓度为10 g/L时,镀层显微硬度最大(615.2HV);当磁力搅拌速率为300 r/min时,镀层的显微硬度最大(632.8HV)。磁力搅拌-化学沉积Ni-P-SiC镀层的最佳工艺参数为:SiC添加的质量浓度10 g/L,搅拌速率300 r/min,温度85℃。  相似文献   

14.
研究了热处理对Ni-P -Al2 O3 复合化学镀层性能的影响。结果表明 ,Ni-P -Al2 O3 复合化学镀层的硬度和耐磨性随加热温度的升高而升高 ,并在 40 0℃时达到最大值。镀层的耐蚀能力随加热温度的升高而降低 ,但当加热温度超过 45 0℃后 ,耐蚀能力又会明显提高  相似文献   

15.
HVOF和APS制备WC-Co/NiCrBSi复合涂层高温摩擦学特性研究   总被引:2,自引:0,他引:2  
何龙  谭业发  周春华  谭华  高立 《兵工学报》2013,34(9):1109-1115
运用超音速火焰喷涂(HVOF)和等离子喷涂(APS)技术在7005 铝合金表面制备了WC-Co/ NiCrBSi 复合涂层,分析了2 种技术所制备复合涂层的微观结构,研究了其在高温条件下的摩擦磨损行为与机制。结果表明:采用HVOF 技术制备的复合涂层孔隙率仅为APS 制备复合涂层的28. 9%;其显微硬度(838. 4HV0. 5)以及与基体间元素扩散层厚度( Al:13. 17 μm, Ni:12. 55 μm) 均高于APS 制备的复合涂层。不同温度条件下,HVOF 制备复合涂层的摩擦系数和磨损失重均低于APS 制备复合涂层。室温25 ℃时,HVOF 制备复合涂层以微观切削磨损和轻微的疲劳磨损为主,而APS 制备的复合涂层则主要为疲劳断裂磨损;高温400 ℃条件下,前者的磨损机理变为多次塑变磨损和氧化磨损,而后者则为严重的粘着磨损和氧化磨损。  相似文献   

16.
热处理对Fe-W-ZrO2纳米复合镀层结构和性能的影响   总被引:1,自引:0,他引:1  
采用复合电沉积方法,在碳钢表面制备质量分数为Fe38.3%、W52.7%、ZrO29%的Fe-W-ZrO2纳米复合镀层,研究热处理对镀层结构和性能的影响。结果表明,镀态下Fe-W-ZrO2纳米复合镀层内部结构致密无裂纹,呈明显非晶态结构特征,具有较高的硬度和耐磨性;复合镀层经500℃热处理后开始晶化,随温度升高,镀层晶化析出α-Fe相,硬度、耐磨性继续提高;700℃时复合镀层晶化完成,M6C型复合碳化物Fe3W3C析出,与α-Fe相两相并存,镀层硬度、耐磨性急剧增大,到800℃时,Fe3W3C硬质相逐渐成为主相,硬度达到最高点1270HV,耐磨性是镀态下的5~7倍;而且纳米微粒ZrO2的引入不会在Fe-W非晶合金镀层中形成新相,在适当的热处理下能有效提高Fe-W-ZrO2纳米颗粒复合镀层的硬度、耐磨性。  相似文献   

17.
SiC粒度对磁力搅拌-化学沉积Ni-P-SiC镀层的影响   总被引:1,自引:0,他引:1  
用磁力搅拌-化学沉积方法在45钢表面制备Ni-P-SiC镀层,研究镀液中SiC颗粒粒度对镀层表面形貌、显微硬度及耐磨性能的影响。结果表明:随着SiC颗粒的粒度逐渐减小,镀层的平整度和致密性增加,SiC颗粒团聚现象越来越不明显;当SiC粒度为0.2 μm,Ni-P-SiC镀层表面均匀分散着微小的SiC颗粒,镀层平整、致密,平均显微硬度为853.4HV;当SiC粒度为1,2 μm,最大硬度差分别为25.8HV和40.5HV。随着磨损时间的增加,含有SiC粒度0.2 μm的Ni-P-SiC镀层的磨损量缓慢增加,而SiC粒度为2,1 μm的Ni-P-SiC镀层的磨损量急剧增加。  相似文献   

18.
采用热化学反应法,以Al2O3、SiO2及ZnO为主要原料,并添加金属铝粉末,在Q235钢上制备Al2O3基陶瓷涂层,研究Al添加量对涂层性能的影响。采用X射线衍射仪(XRD)、扫描电镜(SEM)对涂层的物相组成、表面形貌和磨损形貌进行分析,并对涂层热震性、致密性、耐磨性及耐蚀性进行测试。结果表明,经600℃固化后,涂层中有MgAl2O4、AlPO4、MgO.SiO2等新相产生。当Al添加量为9%时,涂层的抗热震性能和致密性最好,热震次数可达50次以上。当Al含量为3%时,涂层表现出最为优异的耐磨损性能,耐磨性比基体大为提高。在酸、碱、盐溶液中,涂层的耐蚀性比基体大为提高,并且当Al添加量分别为9%、1%、3%时的涂层表现最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号