首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geological, petrological and geochemical studies indicated that there are two distinct types of granitoid rocks: older quartz diorites to granodiorite assemblage and younger granitoids, the latter occurring in two phases. The older granitoids have a meta-aluminous chemistry and a calc-alkaline character, with high MgO, Fe2O3, TiO2, CaO, P2O5, Sr and low SiO2, K2O, and Rb. Their major and trace elements data, together with low 87Sr/ 86Sr ratios (0.7029±0.0008) are indicative of I-type affinities. The second-...  相似文献   

2.
The study area in the northwest Sinai represents one of the most significant regions in the Egyptian basement intensely invaded by post-orogenic calc-alkaline dyke swarms. Two post-orogenic dyke swarms have been recognized in NW Sinai namely: (1) mafic dykes of basalt, basaltic andesite and andesite composition and (2) felsic dykes of dacite, rhyodacite and rhyolite composition. These basaltic to rhyolitic dykes intruded contemporaneously and shortly after the intrusion of the post-orogenic leucogranite. The mafic and felsic dykes are enriched in incompatible elements, especially in the large ion lithophile elements (e.g. K, Rb, Ba) and depleted in high field strength elements with negative P, Ti and Nb anomalies. Major and trace element geochemistry indicates that investigated mafic and felsic magma types are not related via fractional crystallization. The protoliths of the mafic and felsic dykes appear to have evolved from different parental magmas. The incompatible trace element patterns favour a derivation of the mafic dykes from melting of a garnet peridotite source followed by fractional crystallization of olivine, clinopyroxene amphibole and zircon. The felsic dykes, on the other hand, could be generated by melting of garnet-free source modified subsequently by fractional crystallization of plagioclase, apatite and titanomagnetite. This implies variable source characteristics at the end of the Pan-African in the NW Sinai.The mafic and felsic dykes can be related to an intracontinental setting and that this was accompanied by a chemical evolution of the subcontinental lithosphere. Magma generation and ascent in the area was favoured by extensional movements, which is already known from other areas in NE Africa.  相似文献   

3.
A gabbro-diorite plutonic complex from the Southeast Obudu Plateau, representing limited volumes of magma, was studied for its trace and rare-earth element characteristics, in an attempt to document its genetic and geodynamic history. Geochemical studies indicate that the gabbro samples are characterized by variable concentrations and low averages of such index elements as Cr (40×10-6–200×10-6; av. 80×10-6), Ni (40×10-6–170×10-6; 53.33×10-6) and Zr (110×10-6–240×10-6; 116.67×10-6); variable and high average...  相似文献   

4.
5.
Large NE–SW oriented asymmetric inversion anticlines bounded on their southeastern sides by reverse faults affect the exposed Mesozoic and Cenozoic sedimentary rocks of the Maghara area (northern Sinai). Seismic data indicate an earlier Jurassic rifting phase and surface structures indicate Late Cretaceous-Early Tertiary inversion phase. The geometry of the early extensional fault system clearly affected the sense of slip of the inverted faults and the geometry of the inversion anticlines. Rift-parallel fault segments were reactivated by reverse slip whereas rift-oblique fault segments were reactivated as oblique-slip faults or lateral/oblique ramps. New syn-inversion faults include two short conjugate strike-slip sets dissecting the forelimbs of inversion anticlines and the inverted faults as well as a set of transverse normal faults dissecting the backlimbs. Small anticline–syncline fold pairs ornamenting the steep flanks of the inversion anticlines are located at the transfer zones between en echelon segments of the inverted faults.  相似文献   

6.
以地表观测与最新的地震和钻探等工程资料为依托,运用构造解析研究思路与方法,对韩城矿区南部进行构造应力场与期次恢复,讨论研究区构造变形特征、形成机制及变形期次。分析研究区构造变形特征与构造空间组合关系,划分控煤构造样式,揭示构造成因,进行含煤有利区构造预测与评价。结果显示,区内存在NEE向挤压断块、NEE向复式地堑构造及NNE向挤压隆升-伸展断陷复合构造等3种构造样式,以NEE向复式地堑构造为主;研究区自三叠纪后经历了印支运动期NNW向挤压、燕山运动中期NWW向挤压和喜马拉雅运动期NE向挤压兼右旋剪切与NW-SE向伸展断陷作用3期构造作用,最大主压应力方位分别为335°、285°、44°;NEE向的正断层系是喜马拉雅运动期沿先存的同向优势构造剪节理面进一步发育而成,构成了区内特征性构造,控制了区内煤层空间赋存状况,其发育程度直接影响区内煤炭资源下一步勘查与开发进程。研究区东北部煤层埋藏深度适中,构造简单,是煤炭资源赋存条件最有利区,通过进一步勘查评价,有望成为韩城矿区重要的资源接续地之一。  相似文献   

7.
Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite facies zones of the Higo low‐P/high‐T metamorphic terrane. Here, we report data from an outcrop in the highest grade part of the granulite facies zone, in which diatexite occurs as a 3 m thick layer between 2 m thick layers of stromatic‐structured metatexite within pelitic gneiss. The migmatites and gneiss contain the same peak mineral assemblage of biotite + plagioclase + quartz + garnet + K‐feldspar with retrograde chlorite ± muscovite and some accessory minerals of ilmenite ± rutile ± titanite + apatite + zircon + monazite ± pyrite ± zinc sulphide ± calcite. Calculated metamorphic P–T conditions are 800–900 °C and 9–12 kbar. Zircon in the diatexite forms elongate euhedral crystals with oscillatory zoning, but no core–rim structure. Zircon from the gneiss and metatexite forms euhedral–subhedral grains comprising inherited cores overgrown by thin rims. The overgrowth rims in the metatexite have lower Th/U ratios than zircon in the diatexite and yield a 206Pb/238U age of 116.0 ± 1.6 Ma, which is older than the 110.1 ± 0.6 Ma 206Pb/238U age derived from zircon in the diatexite. Zircon from the diatexite has variable REE contents with convex upward patterns and flat normalized HREE, whereas the overgrowth rims in the metatexite and gneiss have steep HREE‐enriched patterns; however, both types have similar positive Ce and negative Eu anomalies. 176Hf/177Hf ratios in the overgrowth rims from the metatexite are more variable and generally lower than values from zircon in the diatexite. Based on U–Pb ages, trace element and Hf isotope data, the zircon rims in the metatexite are interpreted to have crystallized from a locally derived melt, following partial dissolution of inherited protolith zircon during anatexis, whereas the zircon in the diatexite is interpreted to have crystallized from a melt that included an externally derived component. By integrating zircon and petrographic data for the migmatites and pelitic gneiss, the metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived juvenile component. The Cretaceous high‐temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle‐derived basalts under a volcanic arc along the eastern margin of the Eurasian continent and advection of heat via hybrid silicic melts from the lower crust. Post‐peak crystallization of anatectic melts in a high‐T region at mid‐crustal depths occurred in the interval c. 116–110 Ma, as indicated by the difference in zircon ages from the metatexite and diatexite migmatites.  相似文献   

8.
The N–S trending Tuludimtu Belt in the extreme west of Ethiopia has been subdivided into five lithotectonic domains, from east to west, the Didesa, Kemashi, Dengi, Sirkole and Daka domains. The Kemashi, Dengi and Sirkole Domains, forming the core of the belt, contain volcano-sedimentary successions, whilst the Didesa and Daka Domains are gneiss terranes, interpreted to represent the eastern and western forelands of the Tuludimtu Belt. The Kemashi Domain, which consists of an ophiolitic sequence of ultramafic and mafic volcanic and plutonic rocks together with sedimentary rocks of oceanic affinity, is interpreted as oceanic crust and is considered to represent an arc-continent suture zone. The Dengi Domain, composed of mafic to felsic volcanic and plutonic rocks, and a sequence of volcanoclastic, volcanogenic, and carbonate sediments, is interpreted as a volcanic arc. The Sirkole Domain consists of alternating gneiss and volcano-sedimentary sequences, interpreted as an imbricated basement-cover thrust-nappe complex. All the domains are intruded by syn- and post-kinematic Neoproterozoic granitoids. Structural analysis within the Didesa and Daka Domains indicate the presence of pre-Pan African structures, upon which Neoproterozoic deformation has been superimposed. The gneissic rocks of these two domains are regarded as pre-Pan African continental fragments amalgamated to West Gondwana during Neoproterozoic collision events. Unconformably overlying all of the above are a series of tilted but internally undeformed conglomerate–sandstone–shale sequences, regarded as post-accretionary molasse-type deposits, formed during gravitational collapse of the Tuludimtu Belt. The Tuludimtu Belt is interpreted as a collision orogenic belt formed during the assembly of West Gondwana prior to final closure of the Mozambique Ocean.  相似文献   

9.
The Luning–Fencemaker fold-thrust belt (LFTB) of central Nevada reflects major Mesozoic shortening in the western US Cordillera, and involved contractional deformation in Triassic and lower Jurassic back-arc basinal strata. Structural analyses in the Santa Rosa Range, in the northern LFTB, provide new insight into the evolution of this belt. Four phases of deformation are recognized in the Santa Rosa Range. D1 involved tight to isoclinal folding, cleavage development under low-grade metamorphic conditions, and reverse faulting. This deformation phase reflects NW–SE shortening of 55–70% in the Early and/or Middle Jurassic. D2 structures are similar in orientation to D1 but involved much less overall strain and are well developed only to the southeast. D2 appears to be related to thrusting along the eastern margin of the LFTB in the Middle and/or Late Jurassic. D3 deformation reflects very minor shortening (<5%) in a subvertical direction, and is tentatively interpreted to reflect stresses generated during initial intrusion of mid-Cretaceous plutons in the area. D4 deformation demonstrably occurred synchronously with emplacement of Cretaceous granitoids dated at 102 Ma (U–Pb zircon) based on syntectonic relations between D4 structures and thermal metamorphism associated with intrusion, and an upgrade in D4 strain in the thermally softened metamorphic aureoles of the intrusions. This last phase of deformation reflects minor regional NE–SW shortening, coupled with localized strain associated with pluton emplacement.Formation of the LFTB structural province was accomplished during the D1 and D2 phases of deformation, and most shortening occurred during the D1 event. This Jurassic deformation led to structural closure of the back-arc basin by top-to-the-SE tectonic transport and development of a largely ductile fold-thrust belt. Subsequent deformation (D3 and D4) is >50 m.y. younger and unrelated to development of the LFTB. The younger deformation reflects a combination of minor regional shortening, interpreted to be related to the Cretaceous Sevier orogeny, plus localized shortening related to emplacement of Cretaceous intrusions.  相似文献   

10.
Collision‐related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from metasedimentary sources. However, in the late Neoproterozoic calcalkaline (CA) batholiths of the Arabian–Nubian Shield (ANS), which constitutes the northern half of the East African orogen, any sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here, we use paired in situ LASS‐ICP‐MS measurements of U–Th–Pb isotope ratios and REE contents of monazite and xenotime and SHRIMP‐RG analyses of separated zircon to demonstrate direct linkage between migmatites and granites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth at 640–600 Ma, in metapelites, migmatites and peraluminous granites of three metamorphic suites: Abu‐Barqa (SW Jordan), Roded (S Israel) and Taba–Nuweiba (Sinai, Egypt). The distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions, involving partial melting, prevailed for c. 10 Ma, from 620 to 610 Ma. REE abundances in monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates cluster at 600–580 Ma, recording retrogression to greenschist facies conditions as garnet continued to destabilize. Phase equilibrium modelling and mineral thermobarometry yield P–T conditions of ~650–680°C and 5–7 kbar, consistent with either water‐fluxed or muscovite‐breakdown melting. The expected melt production is 8–10 vol.%, allowing a melt connectivity network to form leading to melt segregation and extraction. U–Pb ages of zircon rims from leucosomes indicate crystallization of melt at 610 ± 10 Ma, coinciding with the emplacement of a vast volume of CA granites throughout the northern ANS, which were previously considered post‐collisional. Similar monazite ages (c. 620 Ma) retrieved from the amphibolite facies Elat schist indicate that migmatites are the result of widespread regional rather than local contact metamorphism, representing the climax of the East African orogenesis.  相似文献   

11.
The Lower Cretaceous sections in northern Sinai are composed of the Risan Aneiza (upper Barremian-middle Albian) and the Halal (middle Albian-lower Cenomanian) formations. The facies reflect subtle paleobathymetry from inner to outer ramp facies. The inner ramp facies are peritidal, protected to open marine lagoons, shoals and rudist biostrome facies. The inner ramp facies grade northward into outer ramp deposits. The upper Barremian-lower Cenomanian succession is subdivided into nine depositional sequences correlated with those recognized in the neighbouring Tethyan areas. These sequences are subdivided into 19 medium-scale sequences based on the facies evolution, the recorded hardgrounds and flooding surfaces, interpreted as the result of eustatic sea level changes and local tectonic activities of the early Syrian Arc rifting stage. Each sequence contains a lower retrogradational parasequence set that constituted the transgressive systems tracts and an upper progradational parasequence set that formed the highstand systems tracts. Nine rudist levels are recorded in the upper Barremian through lower Cenomanian succession at Gabal Raghawi. At Gabal Yelleg two rudist levels are found in the Albian. The rudist levels are associated with the highstand systems tract deposits because of the suitability of the trophic conditions in the rudist-dominated ramp.  相似文献   

12.
Migmatites comprise a minor volume of the high‐grade part of the Damara orogen of Namibia that is dominated by granite complexes and intercalated metasedimentary units. Migmatites of the Southern Central Zone of the Damara orogen consist of melanosomes with garnet+cordierite+biotite+K‐feldspar, and leucosomes, which are sometimes garnet‐ and cordierite‐bearing. Field evidence, petrographic observations, and pseudosection modelling suggest that, in contrast to other areas where intrusion of granitic magmas is more important, in situ partial melting of metasedimentary units was the main migmatite generation processes. Pseudosection modelling and thermobarometric calculations consistently indicate that the peak‐metamorphic grade throughout the area is in the granulite facies (~5 kbar at ~800°C). Cordierite coronas around garnet suggest some decompression from peak‐metamorphic conditions and rare andalusite records late, near‐isobaric cooling to <650°C at low pressures of ~3 kbar. The inferred clockwise P–T path is consistent with minor crustal thickening through continent–continent collision followed by limited post‐collisional exhumation and suggests that the granulite facies terrane of the Southern Central Zone of the Damara orogen formed initially in a metamorphic field gradient of ~35–40°C/km at medium pressures. New high‐precision Lu–Hf garnet‐whole rock dates are 530 ± 13 Ma, 522.0 ± 0.8 Ma, 520.8 ± 3.6 Ma, and 500.3 ± 4.3 Ma for the migmatites that record temperatures of ~800°C. This indicates that high‐grade metamorphism lasted for c. 20–30 Ma, which is compatible with previous estimates using Sm–Nd garnet‐whole rock systematics. In previous studies on Damara orogen migmatites where both Sm–Nd and Lu–Hf chronometers have been applied, the dates (c. 520–510 Ma) agree within their small uncertainties (0.6–0.8% for Sm–Nd and 0.1–0.2% for Lu–Hf). This implies rapid cooling after high‐grade conditions and, by implication, rapid exhumation at that time. The cause of the high geothermal gradient inferred from the metamorphic conditions is unknown but likely requires some extra heat that was probably added by intrusion of magmas from the lithospheric mantle, i.e., syenites that have been recently re‐dated at c. 545 Ma. Some granites derived from the lower crust at c. 545 Ma are the outcome rather than the cause of high‐T metamorphism. In addition, high contents of heat‐producing elements K, Th, and U may have raised peak temperatures by 150–200°C at the base of the crust, resulting in the widespread melting of fertile crustal rocks. The continuous gradation from centimetre‐scale leucosomes to decametre‐scale leucogranite sheets within the high‐grade metamorphic zone suggests that leucosome lenses coalesced to form larger bodies of anatectic leucogranites, thereby documenting a link between high‐grade regional metamorphism and Pan‐African magmatism. In view of the close association of the studied high‐T migmatites with hundreds of synmetamorphic high‐T granites that invaded the terrane as metre‐ to decametre‐wide sills and dykes, we postulate that crystallization of felsic lower crustal magma is, at least partly, responsible for heat supply. Late‐stage isobaric cooling of these granites may explain the occurrence of andalusite in some samples.  相似文献   

13.
The Temaguessine high-level subcircular pluton is intrusive into the LATEA metacraton (Central Hoggar) Eburnian (2 Ga) basement and in the Pan-African (615 Ma) granitic batholiths along a major NW–SE oriented major shear zone. It is dated here (SHRIMP U–Pb on zircon) at 582 ± 5 Ma. Composed of amphibole–biotite granite and biotite syenogranite, it comprises abundant enclaves: mafic magmatic enclaves, country-rock xenoliths and remarkable Fe-cordierite (#Fe = 0.87) orbicules. The orbicules have a core rich in cordierite (40%) and a leucocratic quartz–feldspar rim. They are interpreted as resulting from the incongruent melting of the meta-wacke xenoliths collapsed into the magma: the breakdown of the biotite + quartz assemblage produced the cordierite and a quartz–feldspar minimum melt that is expelled, forming the leucocratic rim. The orbicule generation occurred at T < 850° and P < 0.3 GPa. The Fe-rich character of the cordierite resulted from the Fe-rich protolith (wacke with 4% Fe2O3 for 72% SiO2). Strongly negative εNd (−9.6 to −11.2), Nd TDM model ages between 1.64 and 1.92 Ga, inherited zircons between 1.76 and 2.04 Ga and low to moderately high ISr (0.704–0.710) indicate a Rb-depleted lower continental crust source for the Temaguessine pluton; regional considerations impose however also the participation of asthenospheric material. The Temaguessine pluton, together with other high-level subcircular pluton, is considered as marking the end of the Pan-African magma generation in the LATEA metacraton, resulting from the linear delamination along mega-shear zones, allowing asthenospheric uprise and melting of the lower continental crust. This implies that the younger Taourirt granitic province (535–520 Ma) should be considered as a Cambrian intraplate anorogenic event and not as a very late Pan-African event.  相似文献   

14.
A geochemical and isotopic study was carried out for the Mesozoic Yangxin, Tieshan and Echeng granitoid batholiths in the southeastern Hubei Province, eastern China, in order to constrain their petrogenesis and tectonic setting. These granitoids dominantly consist of quartz diorite, monzonite and granite. They are characterized by SiO2 and Na2O compositions of between 54.6 and 76.6 wt.%, and 2.9 to 5.6 wt.%, respectively, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), and relative depletion in Y (concentrations ranging from 5.17 to 29.3 ppm) and Yb (0.34–2.83 ppm), with the majority of the granitoids being geochemically similar to high-SiO2 adakites (HSA). Their initial Nd (εNd = − 12.5 to − 6.1) and Sr ((87Sr/86Sr)i = 0.7054–0.7085) isotopic compositions, however, distinguish them from adakites produced by partial melting of subducted slab and those produced by partial melting of the lower crust of the Yangtze Craton in the Late Mesozoic. The granitoid batholiths in the southeastern Hubei Province exhibit very low MgO ranging from 0.09 to 2.19 wt.% with an average of 0.96 wt.%, and large variations in negative to positive Eu anomalies (Eu/Eu = 0.22–1.4), especially the Tieshan granites and Yangxin granite porphyry (Eu/Eu = 0.22–0.73). Geochemical and Nd–Sr isotopic data demonstrate that these granitoids originated as partial melts of an enriched mantle source that experienced significant contamination of lower crust materials and fractional crystallization during magma ascent. Late Mesozoic granitoids in the southeastern Hubei Province of the Middle–Lower Yangtze River belt were dominantly emplaced in an extensional tectonic regime, in response to basaltic underplating, which was followed by lithospheric thinning during the early Cretaceous.  相似文献   

15.
为了研究柴北缘宗务隆构造带印支期构造演化特征,选取宗务隆构造带内具代表性的晒勒克郭来花岗闪长岩和察汗诺花岗闪长岩进行了岩石学、年代学与地球化学研究。锆石SHRIMP U Pb年代学结果显示,晒勒克郭来花岗闪长岩与察汗诺花岗闪长岩分别形成于(249.2±2.6) Ma、(242.7±1.9) Ma和(243.5±2.4) Ma,为早三叠世,也更加证实柴北缘印支期构造岩浆活动的存在。两岩体均相对富SiO2、Na2O和Al2O3,A/CNK分别为1.02~1.06和1.01~1.05,里特曼指数分别为1.54~1.73和1.07~1.61,属于弱过铝质中钾高钾钙碱性I型花岗岩; K/Rb值平均分别为234和279,分异指数分别为72.95~76.06和64.49~76.42,两岩体原始岩浆结晶分异不充分;LREE/HREE分别为6.83~9.70和3.29~7.40,弱的Eu负异常或正异常;在微量元素原始地幔标准化蛛网图上,两岩体明显富集Rb、U、La、Pb、Sr等大离子亲石元素,亏损Nb、P、Ti等高场强元素;察汗诺花岗闪长岩中发育中基性暗色包体,包体和寄主岩中见斜长石、角闪石等矿物结构和成分不平衡现象,说明其为岩浆混合成因。综上所述,两岩体应为印支期柴北缘活动大陆边缘俯冲碰撞作用导致幔源岩浆底侵与下地壳部分重融形成的壳幔混合岩浆形成的产物。对比柴北缘宗务隆构造带与柴东鄂拉山构造带内岩浆岩地质特征认为,宗务隆构造带的形成可能与西秦岭沿共和坳拉谷强烈斜向碰撞柴达木地块有关。  相似文献   

16.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

17.
The Higo terrane in west-central Kyushu Island, southwest Japan consists from north to south of the Manotani, Higo and Ryuhozan metamorphic complexes, which are intruded by the Higo plutonic complex (Miyanohara tonalite and Shiraishino granodiorite).The Higo and Manotani metamorphic complexes indicate an imbricate crustal section in which a sequence of metamorphic rocks with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The metamorphic rocks in these complexes can be divided into five metamorphic zones (zone A to zone E) from top to base (i.e., from north to south) on the basis of mineral parageneses of pelitic rocks. Greenschist-facies mineral assemblages in zone A (the Manotani metamorphic complex) give way to amphibolite-facies assemblages in zones B, C and D, which in turn are replaced by granulite-facies assemblages in zone E of the Higo metamorphic complex. The highest-grade part of the complex (zone E) indicates peak P–T conditions of ca. 720 MPa and ca. 870 °C. In addition highly aluminous Spr-bearing granulites and related high-temperature metamorphic rocks occur as blocks in peridotite intrusions and show UHT-metamorphic conditions of ca. 900 MPa and ca. 950 °C. The prograde and retrograde P–T evolution paths of the Higo and Manotani metamorphic complexes are estimated using reaction textures, mineral inclusion analyses and mineral chemistries, especially in zones A and D, which show a clockwise P–T path from Lws-including Pmp–Act field to Act–Chl–Epi field in zone A and St–Ky field to And field through Sil field in zone D.The Higo metamorphic complex has been traditionally considered to be the western-end of the Ryoke metamorphic belt in the Japanese Islands or part of the Kurosegawa–Paleo Ryoke terrane in south-west Japan. However, recent detailed studies including Permo–Triassic age (ca. 250 Ma) determinations from this complex indicate a close relationship with the high-grade metamorphic terranes in eastern-most Asia (e.g., north Dabie terrane) with similar metamorphic and igneous characteristics, protolith assembly, and metamorphic and igneous ages. The north Dabie high-grade terrane as a collisional metamorphic zone between the North China and the South China cratons could be extended to the N-NE along the transcurrent fault (Tan-Lu Fault) as the Sulu belt in Shandong Peninsula and the Imjingang belt in Korean Peninsula. The Higo and Manotani metamorphic complexes as well as the Hida–Oki terrane in Japan would also have belonged to this type of collisional terrane and then experienced a top-to-the-south displacement with forming a regional nappe structure before the intrusion of younger Shiraishino granodiorite (ca. 120 Ma).  相似文献   

18.
There are several pre-orogenic Neoproterozoic granitoid and metavolcanic rocks in the Lufilian–Zambezi belt in Zambia and Zimbabwe that are interpreted to have been emplaced in a continental-rift setting that is linked to the break-up of the Rodinia supercontinent. However, no geochemical data were previously available for these rocks in the Zambian part of the belt to support this model. We conducted petrographic and whole-rock chemical analyses of the Neoproterozoic Nchanga Granite, Lusaka Granite, Ngoma Gneiss and felsic metavolcanic rocks from the Lufilian–Zambezi belt in Zambian, in order to evaluate their chemical characteristics and tectonic settings. Other magmatic rocks of importance for understanding the evolution of the belt in Zambia, included in this study, are the Mesoproterozoic Munali Hills Granite and associated amphibolites and the Mpande Gneiss. The Neoproterozoic rocks have monzogranitic compositions, aluminum-saturation indices (ASI) < 1.1, and high contents of high field strength elements (HFSE) and rare earth elements (REE). The chondrite-normalised spider diagrams are similar to those of A-type granites from the Lachlan fold belt and show negative Sr, P, and Ti anomalies. On various tectonic discrimination diagrams the Neoproterozoic rocks plot mainly in A-type granite fields. These petrographic and trace element compositions indicate that these rocks are A-type felsic rocks, but they do not have features of granites and rhyolites emplaced in true continental-rift settings, as previously suggested. On the basis of the A-type features and independent regional geological and geochronological data, we suggest that the Neoproterozoic granitoid and felsic metavolcanic rocks were emplaced during the earliest extensional stages of continental rifting in the Lufilian–Zambezi belt. The apparent continental-arc like chemistry of the granitoid and felsic metavolcanic rocks is thus inferred to be inherited from calcalkaline sources. The Mesoproterozoic Munali Hills Granite and Mpande Gneiss have trace element features e.g., Nb–Ta depletions, which indicate that that these gneisses were emplaced in a convergent-margin setting. The MORB-normalised spider diagram of co-magmatic amphibolites exhibit a fractionated LILE/HFSE pattern recognized in subduction zones. This inference is consistent with remnants of ocean crust, juvenile Island arcs and ophiolites elsewhere in the Mesoproterozoic Irumide belt in Zambia and Zimbabwe. In addition, we report the first U–Pb zircon age of 1090.1 ± 1.3 Ma for the Munali Hills Granite. The age for the Munali Hills Granite provides new constraints on correlation and tectono-thermal activity in the Lufilian–Zambezi belt. The age of the Munali Hills Granite indicates that some supracrustal rocks in the Zambezi belt of Zambia, which were previously thought to be Neoproterozoic and correlated with the Katanga Supergroup in the Lufilian belt, are Mesoproterozoic or older. Consequently, previous regional lithostratigraphic correlations in the Lufilian–Zambezi belt would require revision.  相似文献   

19.
The Huize Zn–Pb–(Ag) district, in the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region, contains significant high-grade, Zn–Pb–(Ag) deposits. The total metal reserve of Zn and Pb exceeds 5 Mt. The district has the following geological characteristics: (1) high ore grade (Zn + Pb ≥ 25 wt.%); (2) enrichment in Ag and a range of other trace elements (Ge, In, Ga, Cd, and Tl), with galena, sphalerite, and pyrite being the major carriers of Ag, Ge, Cd and Tl; (3) ore distribution controlled by both structural and lithological features; (4) simple and limited wall-rock alteration; (5) mineral zonation within the orebodies; and (6) the presence of evaporite layers in the ore-hosting wall rocks of the Early Carboniferous Baizuo Formation and the underlying basement.Fluid-inclusion and isotope geochemical data indicate that the ore fluid has homogenisation temperatures of 165–220 °C, and salinities of 6.6–12 wt.% NaCl equiv., and that the ore-forming fluids and metals were predominantly derived from the Kunyang Group basement rocks and the evaporite-bearing rocks of the cover strata. Ores were deposited along favourable, specific ore-controlling structures. The new laboratory and field studies indicate that the Huize Zn–Pb–(Ag) district is not a carbonate-replacement deposit containing massive sulphides, but rather the deposits can be designated as deformed, carbonate-hosted, MVT-type deposits. Detailed study of the deposits has provided new clues to the localisation of concealed orebodies in the Huize Zn–Pb–(Ag) district and of the potential for similar carbonate-hosted sulphide deposits elsewhere in NE Yunnan Province, as well as the Sichuan–Yunnan–Guizhou Zn–Pb–(Ag) metallogenic region.  相似文献   

20.
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号