首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
用纳米硅薄膜制成了共振隧穿量子点二极管,在77K温度下对其I-V特性进行了测量,得到了具有共振隧穿特征的实验结果。对实验结果分析表明,纳米尺寸晶粒构成的量子点具有库仑阻塞效应。  相似文献   

2.
纳米晶硅薄膜的量子尺寸效应研究   总被引:2,自引:0,他引:2  
最近的一些研究指出,纳米晶硅薄膜具有量子点(QuantumDot-Q.D)特征。本文依据一些典型的理论模型,具体计算了纳米晶硅量子点(nc-Si:HQ.D)的量子化能级、激子的能量移动以及体系的库仑能量随纳米硅晶粒尺寸的变化,并结合我们自己,初步分析并讨论了这些能量参数对纳米晶硅量子点的共振隧穿、光致发光(PL)和库仑阻塞的影响。  相似文献   

3.
利用传输矩阵方法,对电子在两个量子点和多个量子点组成的一维链中的共振隧穿现象进行了研究.结果表明:两个量子点时,有共振隧穿发生;增加量子点的个数,共振峰会发生劈裂,且峰的个数与量子点数目相等.该结论与超晶格结构中电子共振劈裂理论一致.进一步增加量子点的个数时,共振能量在2个量子点的共振能级附近进行展宽并形成一个准连续的带状结构.  相似文献   

4.
在建立玻璃中阻容耦合双量子点模型的基础上,通过分析双量子点的静电能和化学势,讨论了化学势随外加偏压的变化和共振隧穿现象.随外加偏压的增大,当双量子点2个能级的化学势相等时发生共振隧穿现象,在I-V特性曲线上呈现电流峰.玻璃中不同间距的量子点用不同大小的耦合电容来表示.随着玻璃中2个量子点之间耦合电容的增大,2个量子点发生共振隧穿所需要的外加偏压随之增大.  相似文献   

5.
利用非平衡格林函数方法,研究了无库仑相互作用的一维复式量子点阵列的电子输运性质,得到了隧穿电流的一般解析武,讨论了量子点参数对共振隧穿电流的影响.  相似文献   

6.
双势垒中杂质原子对量子隧穿的影响   总被引:1,自引:1,他引:0  
采用计算穿越任意势之透射系数的数值计算方法,得到了在双势垒阱区中有正电杂质时电子隧穿的共振能级、波函数、透射系数.通过与无杂质原子的双势垒量子隧穿情形对比,详细讨论了杂质原子对量子隧穿的影响.数值结果显示,体系的有效势是双势垒与杂质原子库仑势的叠加,当电子能量处于叠加势中的本征能级时,发生共振隧穿,对纯束缚态,不可能发生共振隧穿.此外,还给出势阱中有、无杂质两种情形的波形图,通过对比,可以进一步看出杂质原子对共振隧穿的影响.  相似文献   

7.
共振隧穿二极管因其特有的负微分电阻特性,成为一种很有前途的基于能带工程的异质结构量子器件.采用超高真空外延技术,以p型重掺杂硅为衬底生长出以4 nm厚Si0.6Ge0.4层为空穴量子阱、以4 nm厚Si层为空穴势垒的双势垒单量子阱结构.然后用常规半导体器件工艺制成了空穴型共振隧穿二极管.在室温下对面积为8 μm×8 μm的共振隧穿二极管进行测量,其峰值电流密度为45.92 kA/cm2, 电流峰谷比为2.21. 根据测量得到的电流电压特性考虑串联电阻的影响,提取出共振隧穿二极管的直流参数.可以利用这些参数将共振隧穿二极管的直流模型加入SPICE电路模拟软件器中进行共振隧穿二极管电路设计.  相似文献   

8.
针对高介电常数(k)栅堆栈金属氧化物场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)实际结构,建立了入射电子与界面缺陷共振高k栅栈结构共振隧穿模型.通过薛定谔方程和泊松方程求SiO2和高k界面束缚态波函数,利用横向共振法到共振本征态,采用量子力转移矩阵法求共振隧穿系数,模拟到栅隧穿电流密度与文献中实验结果一致.讨论了高k栅几种介质材料和栅电极材料及其界面层(IL)厚度、高k层(HK)厚度对共振隧穿系数影响.结果表明,随着HfO2和Al2O3厚度减小,栅栈结构共振隧穿系数减小,共振峰减少.随着La2O3厚度减小,共振峰减少,共振隧穿系数却增大.随着SiO2厚度增大,HfO2,Al2O3和La2O3基栅栈结构共振隧穿系数都减小,共振峰都减少.TiN栅电极HfO2,Al2O3和La2O3基栅栈比相应多晶硅栅电极栅栈结构共振隧穿系数小很多,共振峰少.  相似文献   

9.
基于含时密度泛函理论,研究了石墨烯量子点二聚物的等离激元激发.当2个石墨烯量子点靠近,若量子点间的间隙较大,通过电容性相互作用时,石墨烯量子点二聚物的低能等离激元共振模式随着间隙的减小发生红移.进一步减小间隙时,由于电子的隧穿,二聚物的等离激元共振模式发生了改变,杂化等离激元共振模式形成.杂化等离激元共振模式随着间隙的减小继续红移.石墨烯量子点二聚物等离激元共振模式的演化规律不依赖于石墨烯量子点的形状.  相似文献   

10.
丁号  王冰  赵辉 《科技资讯》2011,(4):248-249
本文应用南部-自旋空间的非平衡态格林函数方法推导了铁磁-量子点-超导系统的自旋电流公式,数值结果显示该系统具有单一自旋的隧穿共振峰,不同自旋的电流具有不同的反向导通阈值,是具有应用前景的自旋电子器件。  相似文献   

11.
研究在自旋轨道耦合和周期振动场的作用下,电子隧穿双量子阱结构的透射系数和自旋极化率.通过数值计算发现:隧穿后电子的自旋简并消除,得到与自旋相关的共振峰.电子隧穿宽势阱时出现对称的Breit-Wigner共振峰,而隧穿窄势阱时出现不对称的Fano共振峰.研究也发现通过调节入射能量和中间势垒的宽度,可以改变共振峰的振幅和位置.利用这个原理可以设计可调的自旋过滤器,实现对自旋的调控.  相似文献   

12.
高鹤 《河北科技大学学报》2009,30(4):298-301,322
讨论了一个微波场辐照下量子点电极耦合体系,当两边电极间存在非共振直接隧穿时量子.占、上电子态密度的变化情况。用非平衡格林函数方法及吴大琪假设得到了此体系能态密度在相互作用强度U有限情况下的解析表达式。数值计算的结果表明随着背景透射率及库仑相互作用能大小的变化,量子点上电子能态密度共振峰可被增强或减弱,并可能出现新的共振峰结构。  相似文献   

13.
量子阱系统中对粒子透射的理论研究   总被引:1,自引:0,他引:1  
通过求解薛定谔方程得到由矩形势垒构成的量子系统的变换矩阵和透射系数的精确解,并研究了多量子阱系统结构变化对共振隧穿效应的影响。  相似文献   

14.
针对实验中发现的受静电损伤LED与共振隧穿二极管(RTD)模型有相似表现的现象,提出一种LED失效分析方法。经过500~3000V的HBM模型损伤,一部分失效LED的1-V曲线表现出类似共振隧穿二极管(RTD),正向电流呈现隧道电流的特征,证实静电损伤路径穿越了LED内量子阱,改变了内部的结构。将这种曲线与RTD做对比...  相似文献   

15.
研究双势垒GaAs/AlGaAs结构在与时间有关的交变电场的作用下电子间接共振隧穿的几率和隧穿电流密度。采用转移矩阵方法给出电子在不同空间位置的波函数,用微扰的方法求出电子波函数的含时系数,最终给出电子隧穿几率和隧穿电流密度、计算结果表明电子隧穿几率曲线中出现附加的隧穿峰和隧穿峰变低,并且随穿电流密度曲线巾出现附加的隧穿台阶,隧穿峰变低和展宽,这主要是由于外加突变电场与E±nω的电子态耦合,为电子隧穿提供间接的通道和路径、这也是设计双势垒电子隧穿器件不可忽略的、上述方法也可以推广到多量子阶系统。  相似文献   

16.
采用非平衡态格林函数方法,研究了外磁场、微波场对自旋偏压驱动量子点输运特性的影响.数值结果表明:外磁场破坏量子点能级的自旋简并,相应自旋流的共振峰劈裂,电荷流不为零,不能获得纯自旋流;微波场作用下,量子点会有更多的隧穿通道,产生了许多的边带峰,特别是强微波场作用下多光子过程起了重要作用.  相似文献   

17.
通过数值求解非平衡态维格纳函数,研究了三量子阱(three-quantum-well)超晶格单元结构共振隧穿电流-电压特性,给出了量子阱结构参数变化对其伏安特性曲线的影响.  相似文献   

18.
采用数值分析的方法,寻找出三势阱凝聚体的隧穿特性.结果表明,可通过改变相对相位使三势阱凝聚体在宏观量子自俘获态与周期运动之间转换;在φ=π时,系统更易进入宏观量子自俘获状态;在自俘获和量子隧穿的过程中发现了共振特征,这些在双势阱中都没有出现.  相似文献   

19.
以厄密函数作为包络波函数,运用传递矩阵方法系统地研究了具有抛物量子阱的非对称多势垒异质结构中电子隧穿的横向磁场效应。结果表明:对于不同的双势垒结构,传输系数的峰值随磁场的增强有的增大有的减小。对于三势垒结构,由于双量子阱准束缚态之间的耦合,共振时传输系数的峰值随磁场的增强呈现不同于双势垒结构的行为。第一峰值随磁场的增强单调减小,而第二峰值随磁场的增强先是减小而后增大,当峰值增大到几近于1时又开始减小。对于某些非对称多势垒异质结构具有比对称结构更好的横向磁场特性。考虑这一效应和电场效应对共振隧穿结构的设计具有指导意义  相似文献   

20.
近年来,铅系量子点(如PbX,X=S,Se, Te)薄膜光物理性质的研究表明该材料在下一代柔性光电器件中存在潜在应用价值.理解量子点薄膜中载流子输运机制对于发展此类器件至关重要.利用超快瞬态吸收光谱技术,对PbS量子点薄膜中由于载流子输运导致的激子漂白峰位移做了系统性研究.结果发现在高带隙激发条件下,激子漂白峰随延时往低能方向移动,即发生红移.进一步通过分析光谱位移速率和幅值与温度的依赖关系,基于热激活隧穿输运模型揭示了PbS量子点薄膜中的载流子输运机制为电荷隧穿.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号