首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
基于优化SIFT算法的无人机遥感作物影像拼接   总被引:2,自引:1,他引:1  
针对作物遥感影像因对比度低所导致的使用尺度不变特征变换算法(scale-invariant feature transform,SIFT)提取特征点数目少,拼接效果不理想的情况,提出了一种基于图像锐化的自适应修改采样步长的非极小值抑制拼接算法,该算法在图像预处理中引入锐化滤波器对平滑后的图像进行卷积,增强图像细节,增加特征点提取数目,同时通过基于尺度的自适应修改采样步长,使图像特征点分布更加均匀,根据低对比度作物遥感影像的成像特性,采用非极小值抑制,提高图像匹配效率。在查找匹配点的过程中,引入最优节点优先算法(best-bin-first,BBF)查找最近邻与次近邻,采用随机抽样一致算法(random sample consensus,RANSAC)优选特征点。通过试验验证,该文改进后的算法相比于标准SIFT算法,在处理低空作物遥感影像时,特征点提取数目平均增加77.5%,特征点匹配对数平均增加15对,对于标准SIFT算法无法匹配的低对比度作物遥感影像,提取到了8对以上的匹配点对,满足了拼接条件。该改进算法相对于标准SIFT算法更适于低对比度遥感影像的拼接。  相似文献   

2.
为了满足现代农业精准施药技术中导航路径识别的需要,该文提出一种基于最大正方形的玉米作物行骨架提取算法。首先对采集到的田间玉米作物行图像进行灰度变换,采用改进的过绿灰度化算法使作物行与背景明显分割开来;然后通过滤波、阈值分割得到二值图像;而后对经过预处理后的二值图像进行形态学中的闭运算操作,得到玉米作物行的轮廓;最后利用最大正方形准则提取玉米作物行骨架。为了验证该算法的准确度,对提取的玉米作物行骨架进行直线拟合操作,利用拟合出的中央作物行线与实际导航线偏差的大小来判断骨架提取的精准度。试验结果表明,该算法能保持骨架像素的单一性,对边缘噪声具有很强的抗干扰能力,提取骨架的误差小于5 mm,能够满足玉米对行精准施药的需求。  相似文献   

3.
基于多光谱图像和数据挖掘的多特征杂草识别方法   总被引:11,自引:10,他引:1  
为满足变量喷洒对杂草识别正确率的要求,提出一种基于多光谱图像和数据挖掘的杂草多特征识别方法。首先对多光谱成像仪获取的玉米与杂草图像从CIR转换到Lab颜色空间,用K-means聚类算法将图像分为土壤和绿色植物,随后用形态学处理提取出植物叶片图像,在此基础上提取叶片形状、纹理及分形维数3类特征,并基于C4.5算法对杂草分别进行单特征和多特征组合的分类识别。试验结果表明,多特征识别率比单特征识别率高,3类特征组合后的识别率最高达到96.3%。为验证该文提出方法的有效性,将C4.5算法与BP算法以及SVM算法进行比较,试验结果表明C4.5算法的平均识别率高于另2种算法,该文提出的田间杂草快速识别方法是有效可行的。该文为玉米苗期精确喷洒除草剂提供技术依据。  相似文献   

4.
作物育种表型分析研究中,株型参数的获取多以人工测量为主,比较耗时费力。该文基于最小二乘法和遗传算法相结合,提出了一种用于计算作物表型参数的骨架提取方法。以玉米作物为例,首先为去噪后的作物二值图像进行单像素细化,利用角点检测归类算法,检测出特征点;依据骨架图像茎叶角点,利用图像分割将作物茎和叶分离,并对应图像中作物的茎和叶骨架,得到玉米作物空间离散点的实际三维坐标;融合最小二乘法和遗传算法,绘制出离散点的空间拟合曲线,即茎和叶的平滑骨架,从而提取出玉米作物的表型参数。田间试验分析表明,使用该算法能够有效地得到玉米作物的平滑骨架,而且与前人方法相比,测量得到表型参数中,株高误差减小了35%,叶长误差减小了70%,叶倾角误差减小了20%,有效地提高了作物表型参数的测量精度。该研究为提高作物表型参数尤其是株型参数精度提供了参考。  相似文献   

5.
针对基于双目视觉技术的作物行识别算法在复杂农田环境下,立体匹配精度低、图像处理速度慢等问题,该文提出了一种基于Census变换的作物行识别算法。该方法运用改进的超绿-超红方法灰度化图像,以提取绿色作物行特征;采用最小核值相似算子检测作物行特征角点,以准确描述作物行轮廓信息;运用基于Census变换的立体匹配方法计算角点对应的最优视差,并根据平行双目视觉定位原理计算角点的空间坐标;根据作物行生长高度及种植规律,通过高程及宽度阈值提取有效的作物行特征点并检测作物行数量;运用主成分分析法拟合作物行中心线。采用无干扰、阴影、杂草及地头环境下的棉田视频对算法进行对比试验。试验结果表明,对于该文算法,在非地头环境下,作物行中心线的正确识别率不小于92.58%,平均偏差角度的绝对值不大于1.166°、偏差角度的标准差不大于2.628°;图像处理时间的平均值不大于0.293 s、标准差不大于0.025 s,能够满足田间导航作业的定位精度及实时性要求。  相似文献   

6.
基于无人机遥感影像的育种玉米垄数统计监测   总被引:2,自引:2,他引:0  
为准确、快速的获取区域范围内的育种玉米垄数信息,该研究充分利用无人机(unmanned aerial vehicle,UAV)超低空遥感监测技术,通过提取UAV影像的超绿特征和Hough变换方法提取育种玉米的垄数。研究区为金色农华种业科技股份有限公司崖城育种基地,基地内存在正处于苗期、拔节期和成熟期的玉米试验地块,使用的数据源为利用固定翼瑞士e Bee Ag精细农业用无人机获取的超低空可见光影像。研究过程中,首先计算UAV影像的超绿特征,并进行二值优化与形态学开启运算处理,以分离玉米植株与土壤背景信息,采用3种尺寸的窗口搜索并检测用于垄数提取的定位点;然后,用影像分割投影法提取玉米垄线的中心点,减小后续处理的计算量;最后,对已经提取的直线特征不明显的无人机影像中垄线中心点进行Hough变换,以提取玉米垄数。精度评价结果为:采用3种搜索窗口,苗期地块内的43垄玉米的提取精度分别为97.67%、95.35%、88.37%;拔节期地块内的74垄玉米的提取精度分别为100.00%、100.00%、58.11%;成熟期地块内的44垄玉米的提取精度分别为95.45%、90.91%、88.64%。该研究所提出的基于影像分割投影法和Hough变换可以正确提取不同生育期的玉米垄数,其中以拔节期的玉米垄数提取精度最高,此时的玉米植株在UAV影像上可以识别且又尚未封垄,是提取种植垄数的最佳时相;对于定位点检测,与玉米种植的垄间间隔相近的窗口尺寸(1?15或者1?25)是垄数监测的最佳尺寸。  相似文献   

7.
基于自动Hough变换累加阈值的蔬菜作物行提取方法研究   总被引:10,自引:8,他引:2  
为解决机器视觉对生菜和绿甘蓝两种作物在整个生长时期内多环境变量对作物行识别影响的问题,同时提高机器视觉作物行识别算法的有效性,该文提出了一种基于自动Hough变换累加阈值的多作物行提取算法。首先,选用Lab颜色空间中与光照无关a分量对绿色作物进行提取,通过最优自适应阈值进行图像分割,并采用先闭后开形态学运算对杂草和作物边缘进行滤波。其次,采用双阈值分段垂直投影法对作物行特征点进行提取,通过对亮度投影视图中的目标像素占比阈值和噪声判断阈值设置,实现特征点位置判断和杂草噪声过滤,并对相邻特征点进行优化,剔除部分干扰特征。最后,采用Hough变化对特征点进行直线拟合,将不同Hough变换累加阈值获得的拟合直线映射到累加平面上,通过K-means聚类将累加平面数据聚类为与作物行数相同的类数,根据相机成像的透视原理提出基于聚类质心距离差和组内方差的最优累加阈值获取方法,将最优累加阈值下累加平面中的聚类质心作为识别出的真实作物行线。温室和田间试验表明,针对不同生长时期的生菜和绿甘蓝作物,该文算法均可有效识别出作物行线,最优阈值算法耗时小于1.5 s,作物行提取平均耗时为0.2 s,在田间和温室中作物行的平均识别准确率分别为94.6%、97.1%,识别准确率为100%的占比分别为86.7%和93.3%。研究结果为解决多环境变量影响因素下的算法鲁棒性和适用性问题提供依据。  相似文献   

8.
缺株玉米行中心线提取算法研究   总被引:1,自引:1,他引:0  
无人驾驶农机自主进行行驶路径检测和识别系统需要具备环境感知能力。作物行的中心线识别是环境感知的一个重要方面,已有的作物行中心线识别算法在缺株作物行中心线提取中存在检测精度低的问题。该研究提出了一种能够在缺株情况下提取玉米作物行中心线的算法。首先采用限定HSV颜色空间中颜色分量范围的方法将作物与背景分割,通过形态学处理对图像进行去噪并填补作物行空洞;然后分别在图像底部和中部的横向位置设置条状感兴趣区(Region of Interest,ROI),提取ROI内的作物行轮廓重心作为定位点。在图像顶端间隔固定步长设置上端点,利用定位点和上端点组成的扫描线扫描图像,通过作物行区域最多的扫描线即为对应目标作物行的最优线;将获取的最优线与作物行区域进行融合填充作物行中的缺株部位;最后设置动态ROI,作物行区域内面积最大轮廓拟合的直线即为目标作物行中心线。试验结果表明,对于不同缺株情况下的玉米图像,该算法的平均准确率达到84.2%,每帧图像的平均检测时间为0.092 s。该研究算法可提高缺株情况下的作物行中心线识别率,具有鲁棒性强、准确度高的特点,可为无人驾驶农机在作物行缺株的农田环境下进行作业提供理论依据。  相似文献   

9.
针对多源遥感影像自动配准中难以提取大量同名特征点的问题,提出了一种结合非子采样轮廓变换和形态收缩算子的自动配准算法。结合非子采样轮廓变换和形态收缩算子的特征提取算法能够克服角度和尺度偏差,在多方向、多尺度空间精确提取强边缘上的关键结构特征点;基于低频波段的归一化互信息匹配算法和三角形一致检验算法能够提取到大量高可靠性的同名特征点对,保证了多源遥感影像的高精度配准。文中选取角度和尺度偏差显著的SPOT-5(P)和ASTER影像组合进行试验,结果证明以上算法能够检测到大量分布均匀的同名特征点对,配准模型精度趋近于1个像元。该研究可为多源遥感数据的融合和目标识别提供前提条件。  相似文献   

10.
基于无人机多光谱影像的完熟期玉米倒伏面积提取   总被引:5,自引:3,他引:2  
由于土壤、地形、水分以及耕作方式等存在的时空变异性,致使灾后完熟期玉米地块存在4类作物形态,包括叶片呈绿色的未倒伏玉米、叶片淡黄的未倒伏玉米、叶片淡黄的倒伏玉米、黑色阴影区域。为进一步提高现有倒伏玉米面积提取方法的精度,该文以黑龙江省国营农场典型玉米倒伏地块为研究区,获取无人机多光谱数据,对比4类作物形态的光谱、植被指数以及纹理特征差异,经特征筛选后,首先面向倒伏玉米提取构建了5种典型特征组合。然后针对植被指数特征、光谱和纹理特征组合采用最大似然法分类,最后对提取结果的精度进行评价和分析。结果表明:反射光谱特征或植被指数特征无法准确区分4类作物形态,提取的倒伏玉米面积偏差较大;多类纹理特征法所得结果最优,4类典型作物形态的识别平均误差为9.82%,倒伏面积提取的误差为3.40%,Kappa系数为0.84。该研究延展了纹理特征在倒伏玉米面积提取中的应用并对完熟期倒伏玉米识别具有重要的借鉴意义。  相似文献   

11.
无人机遥感技术已逐渐成为获取作物表型参数的重要工具,如何在不降低测量精度的同时提高空间分辨率和测量通量受到表型研究人员的重视。该研究以玉米为研究对象,获取5个生育期无人机图像序列,结合小波变换与双三次插值对数码影像进行超分辨率重建,提取原始影像和重建影像的冠层结构、光谱等参数。基于单一参数和多模态数据构建地上生物量估算模型。结果表明:重建影像质量较高、失真较小,其峰值信噪比为21.5,结构相似性为0.81。航高60 m的重建影像地面采样距离与30 m的原始影像相近,但每分钟可多获取0.2 hm2地块的图像。多模态数据融合在一定程度上克服冠层饱和问题,相对于单一参数获得更高的生物量估测精度,拟合的决定系数为0.83,单一参数拟合的决定系数为0.095~0.750。在采用更高飞行高度条件下,结合超分辨率重建和多模态数据融合估算生物量的精度没有降低、反而略有提高,满足更高测量通量的需求,为解码基因型与表型关联的策略提供依据。  相似文献   

12.
基于无人机数码影像的玉米育种材料株高和LAI监测   总被引:10,自引:7,他引:3  
快速、无损和高通量地获取田间株高(height,H)和叶面积指数(leaf area index,LAI)表型信息,对玉米育种材料的长势监测及产量预测具有重要的意义。基于无人机(unmanned aerial vehicle,UAV)遥感平台搭载高清数码相机构建低成本的遥感数据获取系统,于2017年5—9月在北京市昌平区小汤山镇国家精准农业研究示范基地的玉米育种材料试验田,获取试验田苗期、拔节期、喇叭口期和抽雄吐丝期的高清数码影像和地面实测的H、LAI和地面控制点(ground control point,GCP)的三维空间坐标。首先,基于高清数码影像结合GCP生成试验田的数字表面模型(digital surface model,DSM)和高清数码正射影像(digital orthophoto map,DOM);然后,基于DSM和DOM分别提取玉米育种材料的H和数码影像变量,其中将DOM的红、绿和蓝通道的DN(digital number)值分别定义为R、G和B,进行归一化后得到数码影像变量,分别定义为r、g和b;最后,基于实测H对DSM提取的H进行了精度验证,并用逐步回归分析方法进行了LAI的估测。结果表明,实测H和DSM提取的H高度拟合(R~2、RMSE和n RMSE分别为0.93,28.69 cm和17.90%);仅用数码影像变量估测LAI,得到最优的估测变量为r和r/b,其估算模型和验证模型的R~2、RMSE和n RMSE分别为0.63,0.40,26.47%和0.68,0.38,25.51%;将H与数码影像变量进行融合估测LAI,得到最优的估测变量为H、g和g/b,其估算模型和验证模型的R~2、RMSE和n RMSE分别为0.69,0.37,24.34%和0.73,0.35,23.49%。研究表明,基于无人机高清数码影像结合GCP生成DSM,提取玉米育种材料的H,精度较高;将H与数码影像变量进行融合估测LAI,与仅用数码影像变量相比,估测模型和验证模型的精度明显提高。该研究可为玉米育种材料的田间表型信息监测提供参考。  相似文献   

13.
基于Swin Transformer模型的玉米生长期分类   总被引:1,自引:1,他引:0  
快速准确识别玉米生长的不同阶段,对于玉米种植周期的高效精准管理具有重要意义。针对大田环境下玉米生长阶段分类辨识易受复杂背景、户外光照等因素影响的问题,该研究采用无人机获取玉米不同生长阶段的图像信息,以苗期、拔节期、小喇叭口期、大喇叭口期4个生长阶段为对象,利用Swin Transformer模型引入迁移学习实现玉米不同生长阶段的快速识别。首先结合玉米垄面走向特性,将训练集旋转8次用以扩充数据集;为探究各模型在非清晰数据集上的表现,采用高斯模糊方法将测试集转换6次;最后以AlexNet,VGG16,GoogLeNet做为对比,评估Swin-T模型性能。试验结果表明,Swin-T模型在原始测试集的总体准确率为98.7%,相比于AlexNet,VGG16,GoogLeNet模型分别高出6.9、2.7和2.0个百分点;在错误分类中,大喇叭口期和小喇叭口期由于冠层特征相似,造成识别错误的概率最大;在非清晰数据集下,AlexNet,VGG16,GoogLeNet模型精度总体退化指数分别为12.4%、10.4%和15.0%,Swin-T模型总体退化指数为8.31%,并且退化均衡度、平均退化指数、最大退化准确率均表现最佳。研究结果表明:在分类精度、模糊图像输入等方面,Swin-T模型能够较好地满足实际生产中,玉米不同生长阶段分类识别的实际需求,可为玉米生长阶段的智能化监测提供技术支撑。  相似文献   

14.
利用无人机可见光遥感影像提取棉花苗情信息   总被引:3,自引:3,他引:0  
为提高棉花苗情信息获取的时效性和精确性,该文提出了基于可见光遥感影像的棉花苗情提取方法。首先,利用自主搭建的低空无人机平台获取棉花3~4叶期高分辨率遥感影像,结合颜色特征分析和Otsu自适应阈值法实现棉花目标的识别和分割。同时,采用网格法去除杂草干扰后,提取棉花的形态特征构建基于SVM的棉株计数模型。最后,基于该模型提取棉花出苗率、冠层覆盖度及棉花长势均匀性信息,并绘制棉花出苗率、冠层覆盖度的空间分布图。结果显示,模型的测试准确率为97.17%。将模型应用于整幅影像,计算的棉花出苗率为64.89%,与真实值误差仅为0.89%。同时基于冠层覆盖度、变异系数分析了棉花长势均匀情况。该文提出的方法实现了大面积棉田苗情的快速监测,研究成果可为因苗管理的精细农业提供技术支持。  相似文献   

15.
于2018和2019年在宁夏平吉堡农场进行滴灌水肥一体化氮肥梯度试验,以天赐19为试验材料,设6个氮素水平,即 0 (N0)、90(N1)、180(N2)、270(N3)、360(N4)和450(N5)kg·hm−2,在玉米拔节期(V6)、小喇叭口期(V10)、大喇叭口期(V12)、吐丝期(R1)和乳熟期(R3)利用无人机搭载数码相机获取玉米冠层图像,利用Matlab编写代码开发的数字图像识别系统提取玉米冠层图像红光值R、绿光值G、蓝光值B,研究基于此计算的10个冠层图像参数指标与氮素营养指标间的相关性,筛选出稳定性好且敏感度高的图像色彩参数,构建玉米氮素营养诊断指标与图像参数间关系模型并进行验证,以探究利用无人机图像进行宁夏引黄灌区滴灌玉米拔节-乳熟期氮素营养动态估测的可行性。结果表明:冠层图像参数指标绿光与红光比值(G/R)、绿光标准化值(NGI)、红绿蓝植被指数(RGBVI)与植株氮含量和叶片氮含量相关性高且变异系数小,可作为氮素营养诊断的潜在最佳色彩参数;将最佳色彩参数与植株氮含量和叶片氮含量分别进行回归模型构建,幂函数模型可以更好地预估玉米氮素营养状况;利用2019年相同氮素试验进行模型验证,发现NGI与植株氮浓度和叶片氮浓度实测值与估测值的R2分别为0.738和0.689,检验指标RMSE为2.594和3.014,nRMSE为13.125%和13.347%,预测精度和准确性高于G/R和RGBVI。故选择NGI作为滴灌玉米拔节−乳熟期氮素营养动态诊断的最优参数,参数NGI与植株氮浓度的关系模型(NP=4.967×106NGI14.26)R2为0.707,与叶片氮浓度的关系模型(NL=1.707×106NGI12.88)R2为0.654。说明应用无人机图像技术可以较好地对宁夏引黄灌区玉米拔节−乳熟期氮素营养状况进行动态估测,构建的氮素营养诊断模型可为宁夏引黄灌区滴灌玉米氮肥精准配施提供理论依据。  相似文献   

16.
基于YOLO_X和迁移学习的无人机影像玉米雄穗检测   总被引:1,自引:1,他引:0  
玉米雄穗表型信息的获取对研究玉米长势及产量起着非常重要的作用,为实现复杂田间环境玉米雄穗的精确识别和计数,该研究使用无人机采集试验田的玉米雄穗影像,基于FasterR-CNN、SSD、YOLO_X目标检测模型,使用迁移学习方法实现玉米雄穗的高精度识别,并分析了模型对不同品种和不同种植密度的玉米雄穗检测效果。试验结果表明,基于迁移学习的FasterR-CNN、SSD、YOLO_X的目标检测效果相比于未使用迁移学习的模型有明显提升,其中,迁移学习后YOLO_X的识别精确度为97.16%,平均精度为93.60%,准确度为99.84%,对数平均误检率为0.22,识别效果最好;不同玉米品种对模型的适应性有所差异,其中郑单958对模型适应性最好,Faster R-CNN、SSD、YOLO_X的决定系数R2分别为0.9474、0.9636、0.9712;不同种植密度下玉米雄穗的检测效果有所差异,在29985,44 978,67 466,89 955株/hm2种植密度下,模型对郑单958检测的平均绝对误差分别为0.19、0.31、0.37、0.75,随着种植...  相似文献   

17.
基于无人机多光谱遥感的台风灾后玉米倒伏信息提取   总被引:1,自引:1,他引:0  
为快速获取台风过后玉米倒伏信息,该研究以生态无人农场大田玉米作为研究对象,利用无人机搭载多光谱相机获取玉米田块图像。采用主成分分析(Principal Component Analysis,PCA)变换多光谱图像,保留信息量最多的前3 个主成分波段;应用最小噪声分离变换(Minimum Noise Fraction Rotation,MNF)对48项纹理特征降维,保留信息量最多的前6项特征;计算选择10种植被指数;对多光谱图像进行低通、高通滤波,将以上特征作为全特征集。使用支持向量机递归(Support Vector Machines-Recursive Feature Elimination,SVM-RFE)、 ReliefF和套索算法(Least Absolute Shrinkage and Selection Operator,Lasso)筛选出3种特征子集,建立5种监督分类模型,对4种数据集进行训练。ReliefF特征子集训练的5种监督分类模型测试集最低分类准确率为89.02%,SVM-RFE和Lasso特征子集训练的5种监督分类模型测试集最低分类准确率均为95.38%,与全特征相比仅相差0.58%,表明通过特征筛选方法可在取得较高分类精度同时大幅减少特征输入数量;运用3种特征筛选方法与不同分类模型的最佳组合提取验证区域玉米倒伏信息,通过混淆矩阵验证结果可知,K最邻近模型结合SVM-RFE特征筛选方法分类精度最高,达93.49%,Kappa系数为0.9,表明了分类模型普适性较强。该研究使用最少特征数量参与分类,且获得最高分类识别精度,可为无人机多光谱技术快速、准确提取台风灾后玉米倒伏信息提供技术支持。  相似文献   

18.
基于深度学习的玉米拔节期冠层识别   总被引:2,自引:2,他引:0  
为了满足田间玉米植株快速识别与检测的需求,针对玉米拔节期提出了基于深度学习的冠层识别方法,比较并选取了适于玉米植株精准识别和定位的网络模型,并研制了玉米植株快速识别和定位检测装置。首先拍摄玉米苗期和拔节期图像共计3 000张用于训练深度学习模型,针对拔节期玉米叶片交叉严重的问题,提出了以玉米株心取代玉米整株对象的标记策略。其次在Google Colab云平台训练SSDLite-MobileDet网络模型。为了实现田间快速检测,开发了基于树莓派4B+Coral USB的玉米冠层快速检测装置。结果表明,田间玉米冠层识别模型精度达到91%,检测视频的帧率达到89帧/s以上。研究成果可为田间玉米高精度诊断和精细化作业管理奠定基础。  相似文献   

19.
玉米单倍体种子胚部特征提取及动态识别方法   总被引:1,自引:1,他引:0  
为了实现基于机器视觉方法的玉米单倍体种子识别,该文研究了一种玉米单倍体种子胚部特征提取及动态识别方法。采用一种基于B通道平均像素值的胚部特征提取方法,提取了具有Navajo标记的玉米种子的胚部图像,基于此在RGB颜色空间内提取了样本的Navajo标记图像,从而得到一套玉米单倍体种子快速识别RGB组合算法。在玉米分选试验台上进行了动态分选试验。试验结果表明,该算法对LC09124-UH400品种玉米单倍体的识别正确率为98.04%,对杂合体的识别正确率为94.44%。该文提出的玉米单倍体种子RGB组合快速识别算法与玉米分选试验台结合形成的动态分选系统,有助于实现玉米单倍体种子的自动化分选。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号