首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用热管强化吸附床内的传热传质   总被引:1,自引:0,他引:1  
为了强化吸附式制冷吸附床内的传热传质,设计了利用高效传热元件热管作为内翅片的吸附床。在能量守恒关系和吸附平衡方程的基础上建立了吸附床的数学模型,并对此模型用数值方法进行了求解。求解结果表明利用热管元件可以显著的改善吸附床内的传热传质过程,缩短了吸附式制冷的循环时间,提高了系统的效率,该数学模型为吸附床的设计参数的选择和优化等提供了依据。  相似文献   

2.
太阳能吸附式制冷吸附床的热力计算方法   总被引:1,自引:0,他引:1  
建立了吸附式太阳能制冷装置的吸附床热力计算模型。这一模型综合考虑了吸附床内温度、压力及脱附量等因素的相互影响,更全面地反映了吸附床内的传热、传质情况。依据初始条件、边界条件及热力计算模型,给出了数值计算的内点、边界点差分方程,构造了求解方程组。根据太阳辐射强度情况,进行了数值计算,计算结果与实际相吻合。这为进一步分析吸附床内的动态特性,优化系统设计提供了依据。  相似文献   

3.
化学吸附制冷系统吸附床强化传热的实验研究   总被引:4,自引:1,他引:4  
对化学吸附制冷系统吸附的强化传热传质方法进行了实验研究,针对化学吸附在脱附和吸附方面与物理吸特的不同特点,提出了几种强化传热的方案,通过实验加以比较,得出优化的发生器吸附床结构。  相似文献   

4.
在固体吸附制冷循环中,实际的吸附(解吸)过程都是非平衡吸附过程,与理论循环之间存在较大差距.建立吸附式制冷系统吸附床传热传质数学模型,利用数值方法对数学模型进行求解.采用SCP(单位质量吸附剂的制冷功率)优先,同时兼顾COP(性能系数,即制冷量与加热量的比值)的策略,依据建立的吸附床传热传质数学模型进行计算,从而确定吸附式制冷系统循环的最佳周期是24 min,并分析了吸附单元管的长度尺寸对整个制冷系统循环性能的影响.  相似文献   

5.
李秋英  魏琪 《节能技术》2006,24(6):527-530
为缩短吸附制冷周期,采用两床交替吸附/解吸结构,并采用管内走传热介质,管外填充吸附剂的吸附式制冷系统。建立了相应的数学模型。用数值方法对模型进行了求解,着重对吸附床温度场分布进行了数值模拟,并对吸附床内压力,某些点温度以及吸附量随时间的动态变化进行了模拟,得出的结果与实际情况吻合较好,说明此吸附制冷系统有较好的传热效果,为吸附床的优化设计提供了参考依据。  相似文献   

6.
太阳能固体吸附式制冰机热动力学性能分析模型及实验   总被引:2,自引:0,他引:2  
李明  王如竹  施锋 《太阳能学报》2001,22(3):274-279
分析了太阳能固体吸附式制冷装置中吸会床的传热传质计算过程,给出了求解模型的具体方法,运用数值传热学的方法,计算了在一定日照国徽能量条件下,系统装置的吸附床内的温度场分布,实验表明,所建立的模型能对太阳能固体吸附式制冷装置进行了性能动态模拟,为系统装置的优化设计提供了参考。  相似文献   

7.
蔡宏伟  刘震炎 《节能技术》2005,23(2):108-111,145
介绍了吸附式制冷系统中吸附床的三种强化传热模型结构设计方案。应用ANSYS有限元分析软件分别对这几种吸附床模型结构进行了传热数值分析。通过分析比较模型结构中的温度场分布,提出优化设计的方案。分析的结果可以对今后管式吸附床的强化传热结构设计提供参考。  相似文献   

8.
吸附床的传热传质性能是提高吸附式制冷效率的关键,优化吸附床的结构能够有效提高整个吸附床的传热传质效率,减少热量损失,提高系统的制冷效率(coefficient of performance, COP)和单位质量吸附剂制冷量(specific cooling power, SCP)。本文介绍了近年来几种新型吸附床的类型,综述了吸附剂侧的固化吸附剂和涂层吸附剂,以及换热器侧的新型换热器结构。最后阐述新型吸附床的未来发展方向和研究重点。  相似文献   

9.
从非平衡态热力学角度,对以氯化钙—氨为工质对的固体吸附式制冷系统吸附床内传热传质过程进行了分析,建立了吸附床内热质耦合模型,并通过对模型的数值模拟,探讨了解吸/吸附过程中各热力学流之间的作用关系及其对吸附床熵产率的影响。  相似文献   

10.
柴油机余热吸附式制冷系统的动力学实验研究   总被引:4,自引:0,他引:4  
提出了一种发动机排气余热驱动的以氯化钙-氨为工质对的吸附式制冷机的设计方法,在实际工况下对该系统进行了测试,得出了系统的工作特性曲线,并采用吸附制冷单管实验台,对制冷系统单元吸附床在解吸和吸附过程中的传热传质特性进行了研究,结果表明,在恒定蒸发压力下,制冷能力随进入发生器的热流变化,吸附床内的传质过程主要受传热过程影响。  相似文献   

11.
板式间接蒸发冷却换热器的层流特性研究   总被引:3,自引:0,他引:3  
丁杰  任承钦 《工业加热》2006,35(2):24-29
间接蒸发冷却换热器与传统空调相比具有环保与节能的优点。由于蒸发冷却过程的传热传质机理复杂,本文针对板式间接蒸发冷却换热器,建立了三维稳态传热传质数学模型,并确定了合适的边界条件。通过数值模拟得到了压力场、温度场和浓度场的分布,并讨论了通道间距、速度、温度以及相对湿度等因素对换热效果的影响,为间接蒸发冷却换热器的设计提供了理论指导。  相似文献   

12.
生物质燃料层热解过程的传热传质模型研究   总被引:9,自引:0,他引:9  
通过分析生物质热解过程的传热传质特点,建立了生物质燃料层热解过程的传热传质教学模型。通过数值计算,研究了生物质燃料层在热解过程中所发生的热量和质量迁移现象,分析了热解过程生物质床内部温度场的分布、生物质固体密度的变化和热解区的迁移规律。  相似文献   

13.
对太阳能固体吸附式制冷技术的应用分析   总被引:2,自引:0,他引:2  
本文介绍了太阳能作为驱动热源的固体吸附式制冷系统的基本组成,依据Polnyi吸附势理论和D-R方程对系统的吸附一解吸过程进行了比较准确的描述,着重对固体吸附式制冷技术的实际应用技术分析。主要必须考虑:在对吸附系统的研究中引入“非平衡吸附”概述进行了动态吸附速度的测定,尽可能地选用带有吸收膜的集热器,以及改善吸附床的传热传质性能等。  相似文献   

14.
罗会龙  李明 《新能源》2000,22(11):10-12
描述了固体吸附式制冷系统中吸附床内传热过程的强化方法。分析比较了两种典型结构的吸附床,并在此基础上设计了一种新型结构的吸附床。  相似文献   

15.
文章采用数值模拟方法研究了圆筒型吸附床的二维非稳态脱附传热过程,并基于综合导热系数和接触热阻分析了吸附剂的粒径和吸附床的总孔隙率对吸附床传热性能的影响,以及吸附床的总孔隙率与吸附剂粒径的最优组合。分析结果表明:当吸附床的总孔隙率较大时,吸附剂粒径对吸附床传热性能的影响更为明显,且吸附剂粒径越小,吸附床的传热性能越好;随着吸附剂粒径逐渐增大,吸附床总孔隙率对吸附床传热性能的影响呈现出不同的变化趋势;当吸附剂的粒径较小且吸附床的总孔隙率较大时,吸附床的传热性能最优。  相似文献   

16.
沸石分子筛-水吸附工质对的吸附性能及导热性能   总被引:10,自引:1,他引:10  
吸附工质对的吸附和传热性能是研究吸附式干燥、除湿及制冷的重要基础,由于吸附量与导热系数和吸附材料的性质、温度、压力等许多因素有关,需要通过实验来确定。该文通过对几种沸石分子筛的性能实验研究,测定了其最大吸附量、密度、吸附等压线及导热系数等一系列性能参数及其影响因素,并给出了实际循环过程中吸附床的温度、压力与吸附量之间的关系。研究表明沸石对水的吸附基本满足D—A方程,而沸石导热系数受温度以及吸附量的影响较大,随着温度及吸附量的增加而增加。  相似文献   

17.
太阳能固体吸附式制冷循环的吸附床内传热传质耦合计算   总被引:4,自引:0,他引:4  
李明  王如竹 《新能源》1999,21(3):6-11
用多孔介质理论方法分析了太阳能固体吸式制冷循环的吸附床并相应地按多孔介质的质量、动量、能量传递过程建立了太阳能固体吸附式制冷循环吸附床内传热传质耦合求解的数学模型。用本文建立的方法,可对吸附式制冷循环的吸附床进行了热动力学分析与计算,并可进一步用于系统的优化设计中。  相似文献   

18.
固体吸附式制冷强化传热研究进展   总被引:1,自引:0,他引:1  
吸附床的传热强化是影响固体吸附式制冷的主要因素。简述了吸附制冷的强化传热研究进展,介绍了几种常用的吸附床强化传热方法,提出了固体吸附式制冷强化传热的研究方向。  相似文献   

19.
竖管内溴化锂溶液降膜蒸发数值研究   总被引:2,自引:0,他引:2  
研究以太阳集热板制取的高温空气为热源,直接驱动竖管内溴化锂溶液降膜蒸发的传热性能。提出适用于竖管内溴化锂溶液降膜蒸发传热传质耦合的数学模型,根据合理的数值解法,运用MATLAB软件编程,计算出降膜区域内温度场和浓度场,入口Re数越大,换热效果相对降低,而传质效果增强,并得到量纲为1的降膜换热准则式。通过与经验公式对比发现,溴化锂溶液中传质对传热有抑制作用,且其影响不可忽略。  相似文献   

20.
固体吸附制冷技术的研究进展   总被引:4,自引:1,他引:4  
张志立  王玲 《新能源》1997,19(1):1-7
介绍了国内外固体吸附制冷技术的最新研究进展,主要包括地吸附工质对的研究,对循环方式的研究和对发生器的研究,重点介绍了高效回热循环的工作方式和吸附床传热过程的强化方法,最后对吸附制冷的研究现状做了总结,指出研究的难点和解决的方向,并分析了工程应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号