首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
实验研究了3毫米口径轴对称收缩喷嘴在各种压比下射流垂直冲击和倾斜冲击坚固大平板产生的噪声的指向特性。发现噪声在过平板法线和喷嘴轴线的平面内呈近似四瓣分布,当喷嘴与平板距离减小时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。喷嘴压比增加时,指向壁射流下游的瓣得到增强,反之,指向喷嘴上游的瓣得到增强。根据自由射流噪声的基本指向特性、射流冲击噪声基本指向特性、声波在平板处发生镜面反射和声波能量叠加的设定,建立了一个冲击射流总体噪声指向特性的模型,成功解释了实验结果,并揭示了形成冲击射流总体噪声指向特性的内在机理。  相似文献   

2.
探讨高轴压和围压共同作用下频繁冲击扰动试验过程中伴随主要能量的种类,并推演冲击扰动前后弹性能、塑性能等能量的计算公式;采用预加载围压、高轴压、0.5 MPa冲击气压模拟深部岩体承受的水平应力、垂直高应力及爆破开挖扰动的影响开展动力学试验,并基于试验结果分析含铜蛇纹岩的动力学特征及能量演化规律。研究结果表明:含铜蛇纹岩能承受的扰动冲击次数随轴压增大而减小,随围压增大而增大,且动态峰值应力随扰动冲击次数增加而减小;随扰动冲击次数的增加,岩样伴随的弹性能先增大后趋于减小,伴随的塑性能呈增大的趋势发展,反射能和入射能的比值与透射能和入射能比值的变化规律相反,前者呈增大趋势,后者呈减小趋势;单位体积吸(释)能随扰动冲击次数的增加呈下凸曲线趋势变化,其均值随围压增大先减小后增大,随轴压增大而减小。  相似文献   

3.
燃气射流冲击传热特性的数值模拟   总被引:2,自引:0,他引:2  
针对射流传热问题,利用基于RNGk-ε湍流模型的数值方法模拟了射流垂直冲击平板的流动过程,并与实验数据比较,验证了模型的可行性。在此基础上,以火箭喷管入口参数为入口条件,建立了超音速燃气射流垂直冲击平板和冲击浸没平板的计算模型,分析了不同冲击条件下努塞尔数分布规律和温度分布规律, 论述了超音速射流传热的特性及影响传热特性的因素。得到了冲击距离为(14~18)D的努塞尔数取值范围,并表明冲击距离和射流温度是影响传热效率的关键因素;冲击距离增加,传热效率降低,冲击平板表面的射流温度越高,传热效率越高。  相似文献   

4.
对充液腔体中气体射流的冲击效应进行了实验研究. 测量结果表明了冲击压力的瞬态最 大值、稳态平均值和脉动值随喷管进口压比的增加而增加,冲击区是主要的噪声源和动态压 力承载部位. 通过充气与充水两种状态的对比实验,还揭示了腔体充水时气体射流冲击压力 出现一个上冲阶段,其瞬态最大值比充气值有显著的增加.  相似文献   

5.
超声场下液体环境中近壁空泡溃灭会产生强烈的微射流,为探究微射流冲击壁面流固耦合效应,利用流体力学及冲击动力学,考虑了率相关的J-C材料本构模型,建立并分析了微射流冲击壁面流固耦合三维模型,并通过超声空化试验和基于球形压痕试验理论的反演分析进行了验证。结果表明:微射流冲击下材料表面出现微型凹坑,凹坑深度由微射流速度和微射流直径共同决定且随其增大而增大,凹坑直径主要与微射流直径正相关,而凹坑径深比则主要与微射流速度负相关;壁面压强基本呈对称分布且最大压强出现在微射流冲击边缘;超声空化试验验证了微射流冲击下材料表面出现的微型凹坑,反演分析方法表明,在16~18的径深比下,微射流冲击强度为420~500 MPa,对应的微射流速度为310~370 m/s。试验及反演分析结果与理论分析结果相符,验证了流固耦合模型及反演分析方法的合理性及准确性,为后续工程应用中空化强度、微射流速度等的控制提供了理论参考。  相似文献   

6.
气枪喷嘴高速射流的除水效率研究   总被引:2,自引:0,他引:2  
为揭示喷嘴除水的机理并进而对气枪喷嘴进行改进和优化设计,本文提出了利用图像分析处理对小尺度气枪喷嘴高速冲击乘风破浪的除水效率的研究方法。该方法将有效除水面积作为衡量喷嘴除水效率的标准,从面实现了对喷嘴整体除水效率的定量测量,并利用该方法对影响气枪喷嘴除水效率的各种因素(一次侧压力,喷嘴到平板的距离和射流攻角)进行了研究,并将实验结果与用热线风速仪及总压探头测量的结果进行了比较,得到冲击射流在平板水平速度分量是蚊蝇 嘴除尘除水效率的决定性因素等结论。  相似文献   

7.
超音速冲击射流离散频率噪声的屏蔽抑制方法   总被引:1,自引:0,他引:1  
根据导致超音速冲击射流离散频率噪声的反馈机理,提出了一种能够有效地破坏反馈环的形成,从而抑制超音速冲击射流离散频率噪声的喷嘴屏蔽方法。这种方法是通过阻隔反馈波使其不能到达喷嘴唇口从而破坏反馈环、同时屏蔽罩不与射流接触来实现降噪的目的的。本文介绍了这种方法的基本思想并提出了屏蔽罩的设计要点。实验结果表明,对于合适的屏蔽罩的参数,降噪效果达5分贝以上。应用LDV方法对超声速射流轴线速度进行了测量和比较,发现应用屏蔽降噪方法以后射流轴线速度显著增加,核心区长度增加50%左右。分析表明这种降噪方法对射流冲击障碍物的推力和除尘除水效率的提高有帮助。  相似文献   

8.
为了探究抑制氢气喷射火的有效方法,并揭示氮气射流对氢气喷射火焰的影响规律,开展了一系列氮气作用下氢气喷射火实验。采用喷嘴直径为3mm、滞止压力为10atm的氮气射流,并改变氮气喷射高度和水平喷射距离,对氢气喷射火进行抑制。选择2种典型的氢喷射火,分别为喷嘴直径为3mm、滞止压力为0.1atm的过膨胀亚音速火焰和喷嘴直径为1mm、滞止压力为8atm的欠膨胀超音速火焰。实验结果表明,在氮气射流作用下火焰发生偏转,氢气喷射火长度衰减率随氮气喷射高度增大而减小。当氮气作用于火焰根部时,能有效地扑灭氢气喷射火。随氮气喷射距离增加,氢喷射火长度衰减率减小。另外,欠膨胀超音速氢气喷射火存在火焰抬升现象,氮气更易使喷射火熄灭,且在较大的水平喷射距离下仍能使火焰熄灭;过膨胀亚音速氢气喷射火由于抬升高度不明显,氮气射流灭火效果较差,仅能够在较小的水平喷射距离下使火焰熄灭。  相似文献   

9.
小宽厚比喷嘴喷射出的平面水膜进入静止空气中,在不同气流流速环境下对水膜碎裂过程进行了实验研究。结果表明,静止空气中的水膜表面波呈现对称波形,射流的碎裂长度随雷诺数的增大而增大,喷射压力对射流碎裂长度没有直接影响。空气助力作用使平面射流表面波的上、下气液交界面出现相位差。水膜的碎裂长度随空气助力气流速度的增大而减小;空气助力对于低雷诺数水膜射流具有很强的促进碎裂作用,所以会极大地改善低雷诺数射流的一次雾化效果。随着水流雷诺数的提高,空气助力作用对水膜碎裂长度的影响大为减弱;即使在高速助力空气的作用下,水膜仍长期保持较稳定的射流流态,没有出现明显的水膜撕裂现象。说明在小宽厚比喷嘴的瑞利(Rayleigh)模式射流中,高雷诺数射流是水膜的稳定因素。与气液流速比、气流马赫数等无量纲参数相比,液体喷射的雷诺数是射流碎裂的主要影响因素。  相似文献   

10.
易灿  李根生  陈日吉 《实验力学》2005,20(2):291-296
自振空化射流是利用瞬态流和水声学原理调制而成的一种新型射流,为研究围压下自激振荡空化射流的冲蚀破碎规律,利用高压釜装置测量了1.0mm出口直径的风琴管自振空化喷嘴在各种射流参数情况下冲蚀铝试样的冲蚀质量,并与同等条件下锥形喷嘴冲蚀效率进行了对比。测量结果表明,冲蚀质量基本与射流压力成正比;存在最优喷距和围压,使得冲蚀效果最佳,在本实验条件,分别为喷嘴出口直径的5~7倍和2MPa左右;相同条件下,自振空化喷嘴冲蚀质量约为同等条件下锥形喷嘴冲蚀的1~2倍,这为自振空化射流提高钻井速度等实际应用提供了实验依据。  相似文献   

11.
为了解小火箭发射噪声特性及其在喷口外围的声压场分布规律,针对燃气射流产生噪声问题进行了实验研究和数值计算。讨论了超声速射流噪声的3个主要成分(湍流混合噪声、啸音和宽带激波相关噪声)及相关特点,指出它们产生的根本原因是湍流射流的速度扰动。通过分析不同实验测点的射流噪声声压级峰值,得到了燃气射流噪声在轴向和径向上的分布规律,即随着离喷口距离的增大,轴向噪声的衰减程度大于径向。在实验基础上,利用大涡模拟与FW-H(Ffowcs Williams-Hawkings)声学比拟相结合的方法对燃气射流噪声的声学特性进行计算。结果表明,此方法获得的计算结果与实验结果吻合较好,可为进一步研究射流噪声控制提供参考。  相似文献   

12.
The behavior of a non-buoyant circular water jet discharged from a contraction nozzle was experimentally investigated. In this experiment, the Reynolds number of the jet, based on the mean velocity results obtained by particle image velocimetry (PIV), ranged from 177 to 5,142. From the experimental results, we found that the cross-sectional profile of the axial velocity for a laminar flow near the nozzle did not show a top-hat distribution, whereas the profiles with Reynolds number higher than 437 were almost top-hat. The length of the zone of flow establishment (ZFE) was found to decrease with increasing Reynolds number. The measured centerline velocity decayed more rapidly and, consequently, approached the theoretical equation earlier near the nozzle as the Reynolds number increased. The decay constant for the centerline velocity of the turbulent cases was relatively lower than that discovered in theory. It is assumed that this probably resulted from the use of the contraction nozzle. Verifying the similarity of the lateral velocity profiles demonstrated that the Gaussian curve was properly approximated only for the turbulent jets and not for the laminar or transitional flows. The jet half width seldom grew for the laminar or transitional flows, whereas it grew with increasing axial distance for the turbulent flows. The spreading rates for the turbulent flows gradually decreased with increasing Reynolds number. The normalized turbulence intensity along the jet centerline increased more rapidly with the axial distance as the Reynolds number increased, and tended to the constant values proposed by previous investigators. The Reynolds shear stress levels were also found to increase as the Reynolds number increased for the turbulent jets.  相似文献   

13.
Acoustic phase (ensemble) averaged measurements were performed in a constant temperature, axisymmetric, Mach 0.6 jet of air. These measurements show that the noise directly radiated by the coherent structure in the jet flow field was responsible for the directivity of the acoustic field.List of symbols D nozzle exit diameter - f frequency, Hz - r radial distance from the jet centerline - SPL sound pressure level (ref.: 20 micro pascals) - St Strouhal number, = f D/U - U jet exit velocity - x distance along the jet axis from the nozzle exit - t time - ensemble average quantity  相似文献   

14.
Detailed near-field structures of highly underexpanded sonic free jets have been investigated with the help of computational fluid dynamics. Two-dimensional, axisymmetric Euler equations have been chosen to predict the underexpanded jets, and the third-order total variation diminishing finite-difference scheme has been applied to solve the system of governing equations numerically. Several different nozzles have been employed to investigate the influence of the nozzle geometry on the near-field structures of highly underexpanded sonic free jets. The results obtained show that the distance from the nozzle exit to the Mach disk is an increasing function of the jet–pressure ratio, which also significantly influences the shape of the jet boundary. The diameter of the Mach disk increases with the jet–pressure ratio, and it is further significantly influenced by the nozzle geometry, unlike the distance of the Mach disk from the nozzle exit. However, such a dependence on the nozzle geometry is no longer found when an effective-diameter concept is taken into account for the flow from a sharp-edged orifice. A good correlation in the diameters of the Mach disk is obtained, so that the near-field structure of highly underexpanded sonic free jets is a unique function of the pressure ratio, regardless of the nozzle geometry.  相似文献   

15.
The effect of the nozzle edge shape on the acoustic sensitivity of jets, that is, on the dependence of the jet parameters on the amplitude and frequency of the acoustic oscillations produced by an external source, is experimentally studied. The investigation was performed for nozzle edge configurations, the variation of which did not result in a change in the jet characteristics without external acoustic excitation. This means that the change in the edge shape alone had no influence on the flow pattern at the nozzle exit or the boundary layer flow regime on the nozzle walls. Measurements of the dependence of the mean velocity and the velocity fluctuation intensity on the jet axis on the distance from the nozzle exit showed that a change in the nozzle edge shape can lead to a change in the acoustic sensitivity of the jet when the jet is exposed to external acoustic action.  相似文献   

16.
We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.  相似文献   

17.
Measurements of the mean velocity and turbulence intensity are presented for a rectangular jet of water ejecting into a gaseous ambient. Data are reported for streamwise locations up to 30 nozzle widths from the discharge and spanwise locations covering the inner 80% of the jet width. The flow conditions at the nozzle discharge were controlled by using different nozzle designs (parallel-plate and converging) and flow manipulators (wire grid and screens). The results track the mean velocity and turbulence intensity profiles with streamwise distance, highlighting changes in both the profile shapes and magnitudes for both measured quantities. Independent of nozzle configuration, the mean velocity profile was shown to be most nonuniform and the turbulence intensity most nonhomogeneous at the nozzle discharge. With increasing streamwise distance, the mean velocity profile underwent a gradual transition to a completely uniform condition, while the turbulence field decayed and became homogeneous. The rate of viscous dissipation was shown to depend strongly on the nozzle exit condition. This work was supported by the National Science Foundation under grant numbers CTS-8912831 and CTS-9307232  相似文献   

18.
This paper describes an experimental study of a liquid jet leaving a cylindrical nozzle under gravity. A special optical system was used to study the spatial and temporal interface variations between two liquids. A photoelectric cell was used to measure the light intensity and to obtain the physical parameters of the jet. Spatial analysis revealed a continual contraction of the jet from the nozzle exit to the break-up zone. Fluctuations of the interface over time are characteristic of a random signal with a narrow bandpass. The Fourier transform of the different samples shows a bandpass of finite width centered around a characteristic frequency. The distribution of interface amplitude fluctuations was symmetrical to the average diameter, except in the zone in which the jet breaks up. By systematically tracing the main parameters of the jet diameter, we observed three zones with different jet behavior. The characteristic frequency of interface fluctuations increases as a linear function of the distance from the nozzle. The amplitude of interface fluctuations was an exponential function of the distance at which jet diameter fluctuations were measured.  相似文献   

19.
An experimental investigation of the discrete component in the noise spectrum of an axisymmetrie off-design jet emerging from a sonic or supersonic nozzle into a submerged space is conducted. The influence of the diameter of the reflector, placed at the nozzle edge, on the level, frequency, and phase diagram of the discrete component is examined. The discrete component in the jet noise spectrum has been studied in [1–7].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 157–160, November–December, 1977.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号