首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 250 毫秒
1.
光谱辐射定标是光学遥感仪器研制中的关键环节。深入分析实验室定标的光谱辐射测量仪器至户外应用的不确定度来源,环境温度是限制仪器户外高精度测量的最主要因素之一。传统的光谱辐射度实验室定标通常在室温(~25 ℃)下进行,而户外光谱辐射测量处于不同温度环境,严重影响仪器测量的准确度。设计搭建实验测量系统,采用遥感辐射领域常用的光谱辐射测量仪器,研究环境温度对光谱辐射测量的影响。实验结果显示:常用光谱辐射计(CR-280)的测量结果受温度影响明显,在10~40 ℃之间变化时,仪器光谱辐射亮度测量值在400~700nm波段内的偏差为±5%左右,而700~1 050 nm内的偏差高达±15%左右。这主要由于仪器采用硅探测器,红外波段恰好与硅的带边接近,硅探测器易受温度影响,温度增加硅的带边会向长波方向移动,光谱辐射计的响应度也随之增加。基于实验数据统计分析,提出一种适用于不同类型光谱辐射计的温度修正方法,相对于传统的斜率/截距(S/B)算法适用性更广,还可由公式计算出任意温度下的修正结果。修正后CR-280红外波段的偏差(950 nm左右)由±10%降低为±1%,明显减小了因户外使用与实验室定标温度不同造成的测量结果偏差。此外,利用不同类型光谱辐射测量仪器(Avantes及SVC HR-1024)对温度修正方法进行验证。环境温度变化时光谱仪Avantes(VIS/NIR)的测量结果存在较大偏差(1 060 nm高达±17%)。通过温度修正方法运算,仪器修正值与定标值的偏差在±1%以内。光谱辐射计(SVC HR-1024)不同波段的测量值,与定标值的偏差受温度影响不同。这主要由于:仪器由Si、制冷型InGaAs及扩展InGaAs探测器组成,Si探测器受温度影响大,950~1 000 nm波段测量值与定标值的偏差高达±10%。而制冷型InGaAs可有效控制探测器温度,受温度的直接影响相对小。但随温度增加,InGaAs探测器制冷效果受限(制冷最佳工作温度为20 ℃),测量结果产生偏差(1%~3%)。同样,利用温度修正公式对不同温度下SVC HR-1024的测量结果进行修正运算,仪器因温度变化引起的偏差可降低至±1%以内。  相似文献   

2.
探测器的光谱辐射照(亮)度响应度是辐射定标中最重要的参数之一。传统的光谱辐射定标采用宽谱段光源和单色仪装置测量,新建的激光辐射测量装置采用激光和探测器测量,可以大大降低测量的不确定度。该装置首先将可调谐激光耦合进入积分球生成均匀的朗伯体单色光源,然后采用低温辐射计量传的标准陷阱探测器和面积已知的光阑,进行400~900 nm探测器的光谱辐射照度响应度标定。研究主要集中在四个方面:(1) 低温辐射计仅在某些分立激光波长定标标准探测器,其他激光波长下的光谱响应度必须进行插值,通过对比光谱响应度直接测量方法推导的陷阱探测器量子吸收效率,可以计算插值在其他波长带来的光谱响应度偏差,结果表明400~900 nm数据插值算法的总体偏差小于0.074%;(2) 实验采用电荷积分法测量标准探测器和被测探测器的电荷信号,并采用监视探测器消除激光功率起伏以降低激光功率稳定性的影响,测量重复性优于0.1%;(3) 针对标准探测器在向低温辐射计溯源和进行光谱辐射照度响应度量传时的激光功率差异,采用激光双光路叠加法测量探测器不同波长下的非线性系数,分析标准探测器光谱非线性带来的测量不确定度,在450,632.8和850 nm波长下,当探测器电流从0.2 mA变到3 nA时的非线性修正小于1.000 25;(4) 针对标准探测器定标时的功率模式和量传时的辐射照度模式差异,采用二维电控位移平台测量探测器的均匀性并进行修正,测量得到的标准探测器中心直径5 mm的非均匀性小于0.03%。最终采用可调谐激光辐射照度响应度测量装置,可以实现400~900 nm辐射照度响应度测量不确定度0.14%~0.074%(k=1)。实验对比了激光辐照度响应度装置和标准灯-单色仪装置两种方法测量的探测器的光谱辐射照度响应度。测量结果表明两种装置在400~900 nm的响应度标定近似等价,测量偏差全部位于标准灯-单色仪装置的测量不确定度范围内, 验证了激光辐照度响应度测量装置的实用性。  相似文献   

3.
星载遥感器在轨运行中受到外太空环境以及遥感器自身特性衰变的影响,辐射特性会发生变化。为确保星载遥感数据能真实地反映被观测地物目标特征及其变化规律,需要定期对星载遥感器进行在轨辐射定标。环境小卫星超光谱成像仪(HJ1A/HSI)由于缺乏配套的星上定标系统,基于场地定标的方法难以满足高频次定标的需求。以EO-1/Hyperion为参考遥感器,以HJ1A/HSI为待定标遥感器,通过反卷积方法对两成像光谱仪光谱通道之间进行精确光谱响应匹配,消除波段设置的差异性,显著降低了HSI定标系数的不确定度。基于本定标方法得到的HSI 115个波段的绝对定标系数中,Band 1至Band 60之间的定标系数的不确定度稳定在5%~8%,除760 nm附近的氧气吸收波段与940 nm附近的水汽吸收波段外,其余波段的定标系数的不确定度为7%~18%,随着波长的增加,不确定度增大。与传统波段匹配方法相比,提高了约50%的精度,该定标精度基本可以满足遥感数据定量化应用的需求。该方法解决了在轨星载成像光谱仪光谱通道设置差异大、交叉定标精度低,难以实用的问题,为星载成像光谱仪高频率更新辐射定标数据提供了一种有效方法。  相似文献   

4.
李健军  郑小兵  卢云君  张伟  谢萍  邹鹏 《物理学报》2009,58(9):6273-6278
介绍了利用钛宝石可调谐激光器、倍频器和单波长激光器作为光源,在24个波长分立点定标了三个硅陷阱探测器的绝对光谱响应度,解决了红外激光的精确定位与调整、窗口透过率模拟定标等关键技术.结果显示:在激光波长为412—800nm时,三个陷阱探测器定标的不确定度约低于0.05%;当激光波长大于800nm以及低于355nm时,获得的陷阱探测器的定标不确定度约低于0.065%.硅陷阱探测器可以作为空间各类遥感器在350—1064nm波段定标的传递标准探测器. 关键词: 陷阱探测器 低温辐射计 光谱响应度 辐射定标  相似文献   

5.
InGaAs光电探测器是近红外波段重要的光探测器件之一,具有高量子效率、低暗电流、宽带宽等特性,被广泛应用于光电测量、光通信及遥感等领域中。基于超连续白光激光器与双单色仪的光谱比较装置,利用标准InGaAs陷阱探测器对平面InGaAs探测器在900 nm~1600 nm波段进行了相对光谱响应度的定标,并与利用钨灯作为光源的响应度定标结果进行了比较。两种光源条件下,光谱响应度在900 nm~1600 nm波段最大相对差值小于0.2%,取得了较好的一致性。超连续光源的测量重复性最大值小于0.06%,远小于使用卤钨灯的测量重复性1%,降低了因测量重复性贡献的不确定度分量,验证了超连续激光器在探测器相对光谱响应度定标中的可行性。此外,还对被定标的平面探测器光谱响应度结果进行了测量不确定度分析。  相似文献   

6.
分析了谱线漂移在地面辐射定标、星上辐射定标和在轨对地观测等环节对成像光谱仪辐射测量的影响,建立了从实验室辐射定标到星上辐射定标再到在轨对地观测全过程的辐射传递模型,并通过仿真分析求解了成像光谱仪入瞳处辐射测量不确定与谱线漂移之间的关系。结果表明,谱线漂移导致的辐射测量误差与谱线漂移量和入瞳辐亮度的分布梯度成正比;光谱带宽偏差对测量精度的影响程度较中心波长误差高一个数量级。对于可见近红外(VNIR)波段平均光谱带宽10 nm、短波红外(SWIR)波段平均光谱带宽20 nm的典型成像光谱仪,要保证谱线漂移引起的辐射测量不确定度小于6%,实现成像光谱仪在轨观测时入瞳处的辐射测量绝对精度优于10%,可见近红外波段中心波长偏差应不大于2 nm,光谱带宽偏差应不大于0.1 nm,短波红外波段中心波长偏差应不大于3 nm,光谱带宽偏差应不大于0.1 nm。  相似文献   

7.
成像光谱仪星上定标技术   总被引:2,自引:0,他引:2  
成像光谱仪是同时获取地物图像和光谱信息的新一代光学遥感仪器。星上定标是成像光谱仪光谱图像数据定量化应用的基础。本文阐述了成像光谱仪星上定标的原理,按照星上定标采用的参考标准对星上定标技术进行了分类,详细介绍了星上辐射定标和光谱定标技术,并展望了成像光谱仪未来发展趋势。绝对辐射定标已经成为成像光谱仪星上定标的基本要求,太阳将逐步代替星上标准灯成为绝对辐射标准。基于不同参考标准的定标方法的综合应用将使星上定标精度和可靠性大大提高。随着定标精度的进一步提高,地面光谱定标装置将逐步空间化,基于探测器的星上辐射定标系统也将逐步得到应用。  相似文献   

8.
利用基于超连续激光和单色仪(SCM)的细分光谱扫描定标装置,对传感器的绝对光谱辐亮度响应度进行定标。利用两种绝对功率响应度溯源于低温绝对辐射计的辐亮度探测器(Trap-A和Trap-B),分别以通用的部件级定标方式和基于该定标装置的系统级定标方式(以Trap-A作为参考),确定了Trap-B的绝对光谱辐亮度响应度,两种方式下的定标不确定度分别优于0.46%和1.8%。两种定标结果具有较好的一致性,在450~900 nm波段范围内,相对差异小于0.9%。研究结果表明:基于SCM的细分光谱扫描定标装置适用于传感器的绝对光谱辐射定标,在遥感器的绝对光谱辐射定标方面具有重要的应用价值。  相似文献   

9.
主要针对可应用于空间高层大气遥感的远紫外光谱仪的光谱辐照度响应度定标方法进行研究。针对远紫外波段光谱测试标准装置少,实验系统所需真空度高,实验稳定性难以维持,传统漫反射板和积分球辐亮度定标方法在远紫外波段局限性大、难以利用等特点,研究了适用于远紫外光谱仪器的光谱辐照度绝对辐射定标方法,搭建了相应的真空实验系统,以一台远紫外光谱仪原理样机为对象对研究方法进行了实验验证。实验系统以标准氘灯、真空紫外单色仪和准直系统组成照射系统,将出射准直光辐照度用标准探测器进行标定,三者共同组成了标准光谱辐照度光源;利用该光源照射原理样机并读出相应信号,最终获得光谱辐照度响应度,从而实现了利用标准探测器进行照度传递的远紫外光谱仪器绝对光谱辐射定标,有效的进行了仪器定标。该方法定标不确定度约为7.7%,对远紫外波段空间高层大气遥感光谱仪的地面辐射定标研究具有重要意义。  相似文献   

10.
空间调制干涉光谱成像仪通过干涉仪分光,在探测器上得到干涉条纹,经过软件复原后最终得到目标的光谱信息。发射前的室外辐射定标中的定标光源为太阳,可以有效地弥补实验室辐射定标时定标光源(太阳模拟器)短波波段辐亮度低,导致干涉光谱成像仪短波输出信噪比低、光谱复原精度低的缺点,通过室外辐射定标模拟遥感光谱仪探测地物目标的太阳反射光谱特性,可以得到地物目标的准确光谱信息,并与实验室定标的结果进行相互验证。经过理论研究和计算,使用了两种定标方法-大气漫射板测量法和标准传递辐亮度法进行室外定标,在大理的室外定标结果表明,大气漫射板测量法的定标不确定度为6.3%,标准传递辐亮度法的定标不确定度为6.0%。  相似文献   

11.
星载太阳紫外光谱监视器的地面辐射定标   总被引:1,自引:2,他引:1  
王淑荣  宋克非  李福田 《光学学报》2007,27(12):2256-2261
星载太阳紫外光谱监视器是一种小型化、高精度紫外-真空紫外光谱辐射计,它有两种工作模式,即探测太阳紫外光谱辐照度的太阳模式和探测大气的太阳后向散射紫外光谱辐亮度的大气模式。对应这两种工作模式分别建立了紫外-真空紫外光谱辐照度和紫外光谱辐亮度定标装置。光谱辐照度标准灯直接辐照仪器的漫反射板进行仪器的光谱辐照度响应度定标,光谱辐照度标准灯辐照标准漫反射板形成朗伯面光源进行仪器的光谱辐亮度响应度定标。误差分析表明:160~250 nm光谱辐照度绝对定标误差为6.5%,250~400 nm为4.3%;250~400 nm光谱辐亮度绝对定标误差为5.9%。星载太阳紫外光谱监视器获得的地外太阳紫外光谱辐照度与大气的太阳后向散射光谱辐亮度数据,同国际上的观测结果相比一致性达±10%。  相似文献   

12.
空间紫外遥感仪器光谱响应度定标环境的研究   总被引:1,自引:0,他引:1  
为了减小空间紫外遥感仪器(SURSI)光谱响应度定标不确定度,实现SURSI在轨的高精度探测,对SURSI定标环境进行了深入的分析研究。利用光学薄膜的电磁场理论数值计算出铝+氟化镁膜在250~400nm波段,真空和大气两种环境下的反射率值并进行比对。通过构建SURSI真空/大气响应度比对测试研究系统,对SURSI整机光谱响应度在两种环境下的差异进行了实验研究,在250~400nm波段,平均偏差可达3.8%。理论分析及实验结果表明:受仪器内部光学元件铝+氟化镁膜光学性质的影响,SURSI光谱响应度在真空和大气不同环境下存在明显差异,且偏差值具有波长相关性,直接说明SURSI辐射定标在真空环境下完成的必要性。  相似文献   

13.
用于290~450 nm光谱测量的平场光谱仪   总被引:2,自引:0,他引:2  
冯志庆  白兰  李福田 《光学学报》2004,24(3):93-396
介绍了以自扫描光电二极管阵列(SPD)为探测元件的平像场光谱仪。该谱仪采用车尔尼—特纳(Czerny—Turner)正交型结构,光谱分辨力为0.5nm/pixel。介绍了使用标准直流汞灯和标准石英卤素钨灯进行波长定标和辐射定标方法。并利用该平场光谱仪对290~450nm太阳紫外/大气光谱进行了测量,给出了测量结果。讨论了探测器的特性;为抑制温度对测量结果的影响,探测器两端侧某些像元被物理屏蔽,设置其为背景参考像元即哑元,利用哑元进行实时背景扣除方法来抑制温度漂移、暗电流、暗噪声等因素对测量精度的影响。根据仪器结构讨论了狭缝对谱线的影响,给出了狭缝宽度和谱线宽度的对应关系,并对仪器谱面上的相对测量误差进行了分析。  相似文献   

14.
李志刚 《中国光学》2015,8(6):909-918
本文在评述低温绝对辐射计和SIRCUS发展的基础上,讨论了基于探测器标准的光谱可调谐自校准标准光源的工作原理、发展与应用前景。在探测器型光谱辐射标准研究方面,工作在液氦温度的低温绝对辐射计不确定度达0.01%。美国国家标准与技术研究院(NIST)建立的均匀光源光谱辐照度和光谱辐亮度响应度定标装置(SIRCUS)采用一系列激光器,由低温绝对辐射计传递的硅陷阱探测器定标,不确定度已达到0.1%,成功应用于空间遥感仪器高精度辐射定标。分析认为,发展中的基于探测器标准的光谱可调谐自校准标准光源,定标精度高,自行校正老化、衰减,保证了定标精度长期稳定。  相似文献   

15.
红外焦平面成像器件的光谱响应率是天基红外遥感的基本物理指标。为了准确应用该项参数去除器件在制造工艺中的不均匀性对产品质量的影响,必须在系统使用之前对其重新标定,获取真实值。总结了目前较为普遍的IRPFA产品光谱响应率标定方法,通过比较选择标准代替法对产品进行标定。根据所得到测量数据,分析了其可能存在的误差,总结了在对IRPFA产品进行标定时应注意的问题。同时提出了一种调整积分时间的方法,以弥补有些波段标定黑体辐射功率过低带来误差过大的缺陷。  相似文献   

16.
基于激光的光谱辐射定标   总被引:1,自引:0,他引:1  
随着地面遥感、航空与航天遥感、等离子体物理、定量光谱学等研究的发展,对光谱辐射定标精度提出了越来越高的要求,推动了基于可调谐激光的光谱辐射定标新型技术的发展。国际上英国、美国、德国等国家的计量科研机构相继建立了溯源于低温辐射计、低不确定度的基于可调谐激光的光谱辐射定标装置,用于探测器、遥感仪器光谱响应度定标和特性研究。其中美国国家标准技术研究院(NIST)的均匀光源光谱辐照度和辐亮度响应度定标装置(SIRCUS)和德国物理技术研究院(PTB)的光度学可调谐激光装置(TULIP)最具代表性。相对于灯-单色仪系统,在辐射定标应用中,基于激光的光谱辐射定标具有光谱带宽窄、波长精度高、定标不确定度低等众多优点。本文介绍了基于激光的光谱辐射定标的发展状况和以英国国家物理实验室(NPL)、NIST和PTB为代表的基于激光的辐射定标装置结构与性能,分析了基于激光的光谱辐射定标技术优势,并进一步阐述了此技术的应用。基于激光的光谱辐射定标装置可广泛应用于重要的高精度系统级辐射定标测量,包括亮度温度、空间遥感仪器辐照度和辐亮度定标,推动航空航天、大气物理、光谱学、生物科学等科研、工业领域的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号