首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
自蔓延高温合成的理论与研究方法   总被引:21,自引:0,他引:21  
本文综述了自蔓延高温合成燃烧波的特征,燃烧速度和转化率的方程,各种SHS图式的边界据,影响自蔓延高温合成的主要动力学因素,以及基本的实验方法。  相似文献   

2.
自蔓延高温燃烧合成MoSi2   总被引:5,自引:0,他引:5  
以Mo粉和Si粉为原料,通过自蔓延高温燃烧合成(SHS)的方法成功地制备了MoSi2材料.研究了反应物原料粒度、反应物料坯相对密度、反应物预热温度、稀释剂加入量以及反应气氛对MoSi2燃烧合成的影响.并通过XRD和SEM对燃烧合成产物的物相组成和形貌进行了分析.  相似文献   

3.
TiC-TiB2/Cu复合材料的自蔓延高温合成研究   总被引:3,自引:0,他引:3  
采用SHS/PHIP工艺制备了TiC-TiB2/Cu复合材料,通过实验研究了该系列复合材料的微观结构特征和力学性能。结果表明,TiC-TiB2/Cu复合材料中只有TiC、TiB2和Cu相存在;随着Cu含量的增加,燃烧温度下降,材料的颗粒尺寸变小;TiC-TiB2/Cu复合材料的相对密度、抗弯强度和断裂韧性均随Cu含量的增加呈先增后减趋势,当Cu含量为20%时强度最高为580MPa,Cu含量为40%时韧性最高为8.1MPa·m1/2。  相似文献   

4.
自蔓延高温合成的理论与研究方法   总被引:1,自引:0,他引:1  
本文综述了自蔓延高温合成燃烧波的结构和特征,燃烧速度和转化率的方程,各种SHS图式的边界判据,影响自蔓延高温合成的主要动力学因素,以及基本的实验方法  相似文献   

5.
TiC-TiB2/Cu复合材料的自蔓延高温合成研究   总被引:4,自引:0,他引:4  
采用SHS/PHIP工艺制备了TiC-TiB2/Cu复合材料,通过实验研究了该系列复合材料的微观结构特征和力学性能.结果表明,TiC-TiB2/Cu复合材料中只有TiC、TiB2和Cu相存在;随着Cu含量的增加,燃烧温度下降,材料的颗粒尺寸变小;TiC-TiB2/Cu复合材料的相对密度、抗弯强度和断裂韧性均随Cu含量的增加呈先增后减趋势,当Cu含量为20%时强度最高为580MPa,Cu含量为40%时韧性最高为8.1MPa.m1/2.  相似文献   

6.
通过自蔓延高温合成结合准热等静压法(SHS/PHIP)制备出了致密度为97.7%的TiC-Al2O3-20Fe3合金陶瓷(TAF20),分析了金属陶瓷的相组成、微观组织及性能。结果表明:金属陶瓷由TiC,Al2O3陶瓷颗粒和Fe粘结相组成;粘结相中Fe与Al2O3之间的界面光滑,与TiC之间有一薄的扩散层;TAF20金属陶瓷的抗强度和抗压强度分别为890MPa和18.4GPa。  相似文献   

7.
研究了B2O3-Al-C 体系的燃烧规律, 利用波速方程确定了B2O3-Al-C 体系的反应激活能, 并由此建立了该体系燃烧模式转化的SHS 图。试验中还发现, 体系中出现的不稳定燃烧实际为螺旋燃烧模式。由此, 通过计算机数值模拟不同参数下出现的典型螺旋燃烧的温度场, 并结合实验结果对螺旋燃烧进行了解释。   相似文献   

8.
采用SHS/PHIP工艺制备了致密的TiC-Al2O3-Fe系金属陶瓷,研究了延迟时间,高压特续时间,压力及Fe含量对合成TiC-Al2O3-Fe金属陶瓷实度的影响,结果表明,采用SHS/PHIP技术制备了TiC-Al2O3-Fe系金属陶瓷时,合成产物中气体的排放,液相的存在及组成相之间的润湿性是制备密实材料的关键。  相似文献   

9.
概述了自蔓延高温合成技术的概念,起源和发展,分析了前苏联,美,日和我国的研究状况,论述了自蔓延高温合成技术及其发展方向。  相似文献   

10.
Fe-Al/Al2O3陶瓷基复合材料   总被引:1,自引:0,他引:1  
较系统地论述了Fe-Al/Al2O3陶瓷基复合材料的研究过程和应用开发前景,对所研材料的制备科学及材料强韧性机理等一并给予了阐述。  相似文献   

11.
利用钛铁矿铝热碳热原位还原技术成功制备了Al2O3-TiC增强铁基复合材料。通过XRD,SEM和力学性能检测方法分析了钛铁矿原位合成和添加合成两种方式对Al2O3-TiC增强铁基复合材料的组织和力学性能的影响。结果表明:利用钛铁矿合成的铁基复合材料的增强相为Al2O3,MgAl2O4,TiC和Fe相,添加合成过程中会发生一些硬质相TiC被氧化的现象。钛铁矿原位合成Al2O3-TiC增强铁基复合材料的基体组织呈粗大的块条状分布;添加合成的复合材料的铁基体以块状均匀分布。制备的Al2O3-TiC增强铁基复合材料的性能比较优良。材料的最佳综合力学性能为抗弯强度937MPa,维氏硬度532。  相似文献   

12.
通过自蔓延高温合成结合快速加压法(SHS/QC)制备了TiC/Al2O3复合陶瓷。研究了在不同预热温度、不同稀释剂加入条件下制备的TiC/Al2O3复合陶瓷的 相、组织特征。结果表明,随着预热温度的升高,燃烧由不稳定的螺旋燃烧向稳定的平面燃烧过渡,材料易于压实成型且反应充分,但生成的材料组织粗大。反之,生成的TiC、Al2O3颗粒细小,但加压成型时易出现裂纹。试验测定了该体系的燃烧特性参数,并对反  相似文献   

13.
以天然钛铁矿为主要原料,采用燃烧合成技术制备了TiC-Al2O3/Fe3Al金属间化合物/陶瓷基复合材料.研究了预热时间和热处理对燃烧合成过程及产物的影响.研究结果表明:随着预热时间的延长,燃烧温度和燃烧波速率都增加,产物晶胞参数增大,合成更为完全,无序固溶相进行有序化转变的程度增大.当预热5min时,Fe3Al有序金属间化合物的量明显高于无序固溶相,但继续延长预热时间很难将无序相消除;在750℃下进行热处理,可以制备出以Fe3Al金属间化合物为主要成分的复合粉体.  相似文献   

14.
研究了Al含量和C/Ti对Al+Ti+C复合系热爆反应合成Al/TiC的反应过程及生成相组成的影响。实验结果表明:随着Al含量的增加,反应温度降低,反应时间延长,但反应起始温度几乎没有变化;C/Ti对反应温度和反应时间有很大的影响,但对反应起始温度影响很小。在对生成相组成的研究中发现:当C/Ti=1.25、Al含量不大于60at%和C/Ti=1、Al含量不大于50at%时,生成物只有TiC;随着Al含量的增加,生成Al_3Ti的量增加,并通过热力学理论对反应合成自由能进行了计算,计算结果与试验结果相吻合。另外,通过扫描电子显微镜(SEM)对生成的TiC的组织形貌进行了观察。结果表明:生成的TiC尺寸均匀,约为0.3~0.8μm,大多数呈球状,部分为块状。  相似文献   

15.
通过自蔓延高温合成结合准热等静压法(SHS/PHIP)制备出了致密度为97.7%的TiC-Al2O3-20Fe金属陶瓷(TAF20)。分析了金属陶瓷的相组成、微观组织及性能。结果表明:金属陶瓷由TiC,Al2O3陶瓷颗粒和Fe粘结相组成;粘结相中Fe与Al2O3之间的界面光滑,与TiC之间有一薄的扩散层;TAF20金属陶瓷的抗弯强度和抗压强度分别为890MPa和18.4GPa。  相似文献   

16.
以铝、B2O3为原料,利用自蔓延高温合成(SHS)制备了Al2O3/AlB12复相陶瓷粉体,研究了燃烧条件对粉体特性的影响.结果发现,经球磨处理后,复相陶瓷粉体中Al2O3的平均粒径为3~4μm,AlB12的粒度为亚微米级.粉体的比表面积为~1m2/g.燃烧过程中B2O3易于挥发,并在合成产物的表层生成B2O3和9Al2O3·2B2O3副产物相.在较低压力的氩气中进行合成,可以减少副产物相,获得纯度较高的复相陶瓷.与实际测量的燃烧温度对比发现,按照化学反应式13Al+6B2O3=6Al2O3+AlB12,通过热力学计算得到的绝热燃烧温度明显偏高.  相似文献   

17.
采用自蔓延燃烧合成法在室温下的空气中制备出了TiB2-Al2O3复相陶瓷,通过X射线衍射(XRD)和扫描电镜(SEM)分析表明,合成的产物纯净,无中间相,TiB2的形貌为规则的块状,晶粒细小,平均尺寸为(2~5 μm),弥散的分布在晶粒较大的Al2O3(40~50 μm)四周,而Al2O3的形状不是很规则.该反应不同于一般的元素直接合成,而是由熔化-还原-化合组成的三步反应过程构成.  相似文献   

18.
采用激光引燃自蔓延高温合成法,通过改变激光功率和成分配比制备了TiC陶瓷颗粒增强的Al基复合材料。利用X射线衍射(XRD)和扫描电镜(SEM)对自蔓延合成产物的相组成和显微组织进行研究。结果表明,通过激光引燃自蔓延法可以合成高纯度的TiC/Al基复合材料。随着激光功率升高,引燃时间缩短,合成的复合材料中TiC颗粒的尺寸和孔隙率增大;激光参数不变时,随着Al含量的增多合成TiC颗粒尺寸逐渐变小,形貌由球状转变为多角状。  相似文献   

19.
为探讨Al2O3/Al复合涂层在贫铀表面保护中应用的可行性,采用盐雾腐蚀试验和磨损试验方法,结合SEM/EDS和XRD表征,分析了贫铀表面Al2O3/Al复合涂层的保护性能.结果表明,贫铀表面反应磁控溅射Al2O3/Al涂层没有明显的腐蚀特征,而等离子喷涂Al2O3/Al涂层发生了严重的腐蚀剥落现象.Al2O3/Al涂层表现为磨粒磨损行为,抗磨损性好.作为对比样的贫铀表面Al涂层则表现为粘着磨损行为,抗磨损性差.讨论了贫铀表面涂层的腐蚀和磨损行为.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号