首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Most standard approaches to the static analysis of programs, such as the popular worklist method, are first-order methods that inductively annotate program points with abstract values. In [6] we introduced a second-order approach based on Kleene algebra. In this approach, the primary objects of interest are not the abstract data values, but the transfer functions that manipulate them. These elements form a left-handed Kleene algebra. The dataflow labeling is not achieved by inductively labeling the program with abstract values, but rather by computing the star (Kleene closure) of a matrix of transfer functions. In this paper we show how this general framework applies to the problem of Java bytecode verification. We show how to specify transfer functions arising in Java bytecode verification in such a way that the Kleene algebra operations (join, composition, star) can be computed efficiently. We also give a hybrid dataflow analysis algorithm that computes the closure of a matrix on a cutset of the control flow graph, thereby avoiding the recalculation of dataflow information when there are cycles in the graph. This method could potentially improve the performance over the standard worklist algorithm when a small cutset can be found.  相似文献   

2.
3.
Java卡字节码校验是构成Java卡安全体系结构的重要组成部分.而传统的Java卡字节码校验由于Java智能卡资源的限制,无法在卡内进行.本文通过对控制流程图和类型推导的分析,提出了基于控制流程树的Java卡卡外翻译过程和卡内校验器算法,详细描述了CFT迁移机理并对于基于CFT的Java卡内字节码校验算法和可行性进行了分析与实践.  相似文献   

4.
Bytecode verification algorithms are traditionally based on dataflow analysis. We present an alternative algorithm that first restructures the bytecode and then infers a type signature for each method in a manner typical of functional programming languages. We also give an operational semantics to an algebra of structured bytecode and thereby prove both that restructuring preserves semantics and that our type inference is sound.  相似文献   

5.
Java Bytecode Verification: Algorithms and Formalizations   总被引:5,自引:0,他引:5  
Bytecode verification is a crucial security component for Java applets, on the Web and on embedded devices such as smart cards. This paper reviews the various bytecode verification algorithms that have been proposed, recasts them in a common framework of dataflow analysis, and surveys the use of proof assistants to specify bytecode verification and prove its correctness. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Using transactions in Java Card bytecode programs can be rather tricky and requires special attention from the programmer in order to work around some of the limitations imposed and to avoid introducing serious run-time errors due to inappropriate use of transactions.In this paper we present a novel analysis that combines control and data flow analysis with an analysis that tracks active transactions in a Java Card bytecode program. We formally prove the correctness of the analysis and show how it can be used to solve the above problem of guaranteeing that transactions in a Java Card bytecode program are well-formed and thus do not give rise to run-time errors.  相似文献   

7.
The Java Virtual Machine executes bytecode programs that may have been sent from other, possibly untrusted, locations on the network. Since the transmitted code may be written by a malicious party or corrupted during network transmission, the Java Virtual Machine contains a bytecode verifier to check the code for type errors before it is run. As illustrated by reported attacks on Java run-time systems, the verifier is essential for system security. However, no formal specification of the bytecode verifier exists in the Java Virtual Machine Specification published by Sun. In this paper, we develop such a specification in the form of a type system for a subset of the bytecode language. The subset includes classes, interfaces, constructors, methods, exceptions, and bytecode subroutines. We also present a type checking algorithm and prototype bytecode verifier implementation, and we conclude by discussing other applications of this work. For example, we show how to extend our formal system to check other program properties, such as the correct use of object locks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Feature-oriented programming organizes programs around features rather than objects, thus better supporting extensible, product-line architectures. Programming languages increasingly support this style of programming, but programmers get little support from verification tools. Ideally, programmers should be able to verify features independently of each other and use automated compositional reasoning techniques to infer properties of a system from properties of its features. Achieving this requires carefully designed interfaces: they must hold sufficient information to enable compositional verification, yet tools should be able to generate this information automatically because experience indicates programmers cannot or will not provide it manually. We present a model of interfaces that supports automated, compositional, feature-oriented model checking. To demonstrate their utility, we automatically detect the feature-interaction problems originally found manually by Robert Hall in an email suite case study.Research done while at Brown University.  相似文献   

9.
We present an extension of classical tableau-based model checking procedures to the case of infinite-state systems, using deductive methods in an incremental construction of the behavior graph. Logical formulas are used to represent infinite sets of states in an abstraction of this graph, which is repeatedly refined in the search for a counterexample computation, ruling out large portions of the graph before they are expanded to the state-level. This can lead to large savings, even in the case of finite-state systems. Only local conditions need to be checked at each step, and previously proven properties can be used to further constrain the search. Although the resulting method is not always automatic, it provides a flexible, general and complete framework that can integrate a diverse number of other verification tools.  相似文献   

10.
Model Checking Programs   总被引:10,自引:0,他引:10  
The majority of work carried out in the formal methods community throughout the last three decades has (for good reasons) been devoted to special languages designed to make it easier to experiment with mechanized formal methods such as theorem provers, proof checkers and model checkers. In this paper we will attempt to give convincing arguments for why we believe it is time for the formal methods community to shift some of its attention towards the analysis of programs written in modern programming languages. In keeping with this philosophy we have developed a verification and testing environment for Java, called Java PathFinder (JPF), which integrates model checking, program analysis and testing. Part of this work has consisted of building a new Java Virtual Machine that interprets Java bytecode. JPF uses state compression to handle big states, and partial order and symmetry reduction, slicing, abstraction, and runtime analysis techniques to reduce the state space. JPF has been applied to a real-time avionics operating system developed at Honeywell, illustrating an intricate error, and to a model of a spacecraft controller, illustrating the combination of abstraction, runtime analysis, and slicing with model checking.  相似文献   

11.
Over the past nine years, the Formal Methods Group at the IBM Haifa Research Laboratory has made steady progress in developing tools and techniques that make the power of model checking accessible to the community of hardware designers and verification engineers, to the point where it has become an integral part of the design cycle of many teams. We discuss our approach to the problem of integrating formal methods into an industrial design cycle, and point out those techniques which we have found to be especially effective in an industrial setting.  相似文献   

12.
Bytecode subroutines are a major complication for Java bytecode verification: They are difficult to fit into the dataflow analysis that the JVM specification suggests. Hence, subroutines are left out or are restricted in most formalizations of the bytecode verifier. We examine the problems that occur with subroutines and give an overview of the most prominent solutions in the literature. Using the theorem prover Isabelle/HOL, we have extended our substantial formalization of the JVM and the bytecode verifier with its proof of correctness by the most general solution for bytecode subroutines. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In this paper we investigate how formal software verification systems can be improved by utilising parallel assignment in weakest precondition computations.We begin with an introduction to modern software verification systems. Specifically, we review the method in which software abstractions are built using counterexample-guided abstraction refinement (CEGAR). The classical NP-complete parallel assignment problem is first posed, and then an additional restriction is added to create a special case in which the problem is tractable with an O(n2) algorithm. The parallel assignment problem is then discussed in the context of weakest precondition computations. In this special situation where statements can be assumed to execute truly concurrently, we show that any sequence of simple assignment statements without function calls can be transformed into an equivalent parallel assignment block.Results of compressing assignment statements into a parallel form with this algorithm are presented for a wide variety of software applications. The proposed algorithms were implemented in the ComFoRT reasoning framework [J. Ivers and N. Sharygina. Overview of ComFoRT: A model checking reasoning framework. Technical Report CMU/SEI-2004-TN-018, Carnegie Mellon Software Engineering Institute, 2004] and used to measure the improvement in the verification of real software systems. This improvement in time proved to be significant for many classes of software.  相似文献   

14.
Many modern program verifiers translate the program to be verified and its specification into a simple intermediate representation and then compute verification conditions on this representation. Using an intermediate language improves the interoperability of tools and facilitates the computation of small verification conditions. Even though the translation into an intermediate representation is critical for the soundness of a verifier, this step has not been formally verified. In this paper, we formalize the translation of a small subset of Java bytecode into an imperative intermediate language similar to BoogiePL. We prove soundness of the translation by showing that each bytecode method whose BoogiePL translation can be verified, can also be verified in a logic that operates directly on bytecode.  相似文献   

15.
Bounded Model Checking Using Satisfiability Solving   总被引:9,自引:1,他引:9  
The phrase model checking refers to algorithms for exploring the state space of a transition system to determine if it obeys a specification of its intended behavior. These algorithms can perform exhaustive verification in a highly automatic manner, and, thus, have attracted much interest in industry. Model checking programs are now being commercially marketed. However, model checking has been held back by the state explosion problem, which is the problem that the number of states in a system grows exponentially in the number of system components. Much research has been devoted to ameliorating this problem.In this tutorial, we first give a brief overview of the history of model checking to date, and then focus on recent techniques that combine model checking with satisfiability solving. These techniques, known as bounded model checking, do a very fast exploration of the state space, and for some types of problems seem to offer large performance improvements over previous approaches. We review experiments with bounded model checking on both public domain and industrial designs, and propose a methodology for applying the technique in industry for invariance checking. We then summarize the pros and cons of this new technology and discuss future research efforts to extend its capabilities.  相似文献   

16.
Of special interest in formal verification are safety properties, which assert that the system always stays within some allowed region. Proof rules for the verification of safety properties have been developed in the proof-based approach to verification, making verification of safety properties simpler than verification of general properties. In this paper we consider model checking of safety properties. A computation that violates a general linear property reaches a bad cycle, which witnesses the violation of the property. Accordingly, current methods and tools for model checking of linear properties are based on a search for bad cycles. A symbolic implementation of such a search involves the calculation of a nested fixed-point expression over the system's state space, and is often infeasible. Every computation that violates a safety property has a finite prefix along which the property is violated. We use this fact in order to base model checking of safety properties on a search for finite bad prefixes. Such a search can be performed using a simple forward or backward symbolic reachability check. A naive methodology that is based on such a search involves a construction of an automaton (or a tableau) that is doubly exponential in the property. We present an analysis of safety properties that enables us to prevent the doubly-exponential blow up and to use the same automaton used for model checking of general properties, replacing the search for bad cycles by a search for bad prefixes.  相似文献   

17.
In Java bytecode, intra-method subroutines are employed to represent code in “finally” blocks. The use of such polymorphic subroutines within a method makes bytecode analysis very difficult. Fortunately, such subroutines can be eliminated through recompilation or inlining. Inlining is the obvious choice since it does not require changing compilers or access to the source code. It also allows transformation of legacy bytecode. However, the combination of nested, non-contiguous subroutines with overlapping exception handlers poses a difficult challenge. This paper presents an algorithm that successfully solves all these problems without producing superfluous instructions. Furthermore, inlining can be combined with bytecode simplification, using abstract bytecode. We show how this abstration is extended to the full set of instructions and how it simplifies static and dynamic analysis.  相似文献   

18.
Out of annotated programs proof carrying code systems construct and prove verification conditions that guarantee a given safety policy. The annotations may come from various program analyzers and must not be trusted as they need to be verified. A generic verification condition generator can be utilized such that a combination of annotations is verified incrementally. New annotations may be verified by using previously verified ones as trusted facts. We show how results from a trusted type analyzer may be combined with untrusted interval analysis to automatically verify that bytecode programs do not overflow. All trusted components are formalized and verified in Isabelle/HOL.  相似文献   

19.
软件安全静态分析是检测软件安全漏洞的一种手段。本文在总结现有的软件安全静态分析方法的基础上,将在硬件设计领域得到成功应用的模型检验方法引入到软件产品的检验中,给出了一种基于自动机理论的检测软件安全的模型检验方法,阐述了其原理和工作流程,并用实例进行了验证说明。  相似文献   

20.
对任务流模型检验技术进行了讨论。任务流方法不关心状态数量、能否从一个指定状态到达另一指定状态及系统必须的状态是否存在,而是关心状态组合提供的功能是否存在及各状态组合之间是否存在指定的转换关系,从而避免了状态空间爆炸问题。模块搜索算法以模块为基础对任务流模型进行搜索来验证给定系统是否满足规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号