首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多路阀广泛应用于重大装备领域中,其性能直接影响整机操纵的舒适性和灵活性。在对多路阀阀体进行分析以提升其性能时,内部流体对阀体的作用效果不容忽视。在ANSYS Workbench中对某型号电液比例负载敏感多路阀换向阀块进行流固耦合分析,得到不同阀口开度下,阀体阀芯在流体稳定流动时的受力、变形以及自身固有频率的变化情况。研究结果表明:随阀口开度的增加,流体对阀体阀芯的作用力逐渐减小,换向阀块的最大变形逐渐减小。阀体阀芯的固有频率在流固耦合后降低,阀体阀芯固有频率减小程度存在差异,各阶固有频率在阀口开度增加中基本保持不变。仿真结果为多路阀在设计与优化环节中确定强度薄弱区和颤振补偿所用信号选取提供参考,有助于提高整机性能。  相似文献   

2.
多路阀是甘蔗收获机械液压系统的核心元件,用于控制多个工作装置的协同作业。针对其阀口压差变化大,节流温升明显,易造成阀芯变形卡滞的问题,对多路阀阀芯进行了流固热耦合仿真研究。利用Design Model软件抽取对应流道,并建立不同开度的多路阀流场仿真模型,导入ANSYS Workbench平台进行不同工况下的流固热耦合仿真,分析对比了双U形和三角形节流槽在不同开度、不同进出口压差工况下,多路阀内部流场的流体速度、阀芯温度及变形的情况。结果表明:双U形、三角形节流槽阀芯最高温度始终在节流槽处;随着阀进出口压差增加,油液的最大流速以及两种节流槽型阀芯的最高温度和最大形变量增大,但三角节流槽型阀芯变形相对较小;随着阀口开度的增加,三角节流槽型阀芯温度及最大形变量均小于双U形节流槽阀芯;三角节流槽型阀芯的最大形变量较双U节流槽型阀芯小25.1%。为农业机械多路阀阀芯节流槽设计提供了理论依据。  相似文献   

3.
为解决气体流量阀的进出口压力变化引起输出流量波动的问题,设计了一种采用非全周开口圆柱滑阀结构的压差补偿器。该压差补偿器工作时与流量阀并联,其阀口为具有多级减压效果的典型结构。采用计算流体力学方法对压差补偿器内部流场进行仿真分析,得出不同开度下的压力流量及稳态气动力特性。研究得出在一定阀口开度范围内,气动力随阀口开度增大而增大,是影响阀芯响应速度的重要因素。该研究对于压差补偿器调压性能预测及提高控制精度具有重要意义。  相似文献   

4.
基于Fluent流场仿真软件,对某滑阀内部流场进行数值模拟和可视化研究。在相同计算条件下,分别对不同阀口开度下的三维模型进行稳态模拟仿真,得到滑阀内部流场的速度压力、流量特性以及流量系数的变化规律:在相同的压差条件下,随着阀口开度的增大,阀口处的最大速度、流场的最低压力、流量系数都随之降低。通过改变节流槽的形状进行仿真比较,得到流量系数与节流槽截面形状密切相关,在阀口开度相同的条件下,随着进出口压差的增大,半圆形节流槽滑阀的流量系数变化比较明显。研究为滑阀的优化提供了有效数据,并且对同类型产品的相关研究具有一定参考价值。  相似文献   

5.
压滑阀在工作过程中阀芯卡滞及磨损现象严重,为了改善阀腔流域特性及液压阀的工作性能,构建了液压滑阀的简化模型,基于计算流体力学对双U形节流槽滑阀阀芯及阀腔内流域动态特性进行了分析。研究了节流槽数量、阀口压差对阀腔内流体速度场、阀芯温度场及阀芯应变场动态特性的影响。研究结果表明,随着阀口压差的增加,流体的最大流速以及阀芯的最高温度和最大变形增大;随节流槽数量的增加,阀芯的最大变形增大,流体流速及阀芯最大温度变化微弱。该研究为阀芯优化设计提供了参考。  相似文献   

6.
以某系列双阀芯电液比例多路阀为研究对象,采用CFD流场仿真技术和PIV可视化测速技术对不同阀口开度和流量下的主阀沿进口流道、节流口、阀腔的流场进行了流体仿真和试验可视化研究。应用Fluent软件仿真研究了主阀进口节流流场分布并得出阀口压降特性;采用PIV试验研究的手段对流场分析结果加以验证,应用2D-PIV技术获得主阀腔内部一个截面上的流场分布,并通过相似理论计算得出阀口压降特性。CFD流场仿真和PIV试验结果表明:该双阀芯电液比例多路阀主阀出油环形腔内会形成较大旋涡,且阀口开度和流量对主阀进口节流内部流场结构和阀口压降特性有重要的影响。研究结果对定性分析双阀芯电液比例多路阀主阀内能量损失和噪声、主阀的结构和流道的设计以及优化具有重要实际意义,为CFD技术和PIV技术在双阀芯多路阀领域的应用研究提供了参考。  相似文献   

7.
比例流量阀可根据设定信号连续比例控制执行器的速度或者转速,是重要的电液控制元件,广泛应用于各类电液系统。传统电液比例流量阀为消除负载压力变化对流量的影响,需要采用压差补偿器或流量传感器,增加了阀结构的复杂性和体积,并引起附加的节流损失。针对这些问题,根据Valvistor阀的流量放大特性,提出基于先导流量压差变化-位移校正、主阀流量放大的新型电液比例流量控制原理,该方法根据压力传感器检测的先导阀口压差实时校正先导阀芯位移,并通过主阀线性放大先导阀流量。研究中,建立新型比例流量阀的数学模型,推导得出基于补偿原理的控制策略;进一步建立阀的仿真模型,对比分析补偿前后比例流量阀的静动态特性;设计制造试验样机,通过试验验证了所提原理的可行性。测试结果表明,采用该原理可消除主阀口压差变化对输出流量的影响,动态响应快,特别适用于大流量的电液流量控制。  相似文献   

8.
针对负载敏感比例多路阀在小开口处流量分辨率低导致的负载窜动的问题,采用理论推导和计算流体动力学方法(CFD)仿真的方法,对主阀阀口过流面积进行了研究,获得了阀口结构对微动特性的影响规律,即减小阀芯小开口处锥角可以减小节流口面积梯度,进而优化微动特性。据此设计了一款新的阀芯,并对新旧阀芯进行实验对比研究。研究结果表明:通过减小主阀小开口处过流面积梯度可以实现流量缓慢平稳变化,提高流量控制精度,增加执行机构启动平稳性,实现比例多路阀微动特性优化。  相似文献   

9.
由于多路阀内部流量大、压力高,且流道结构复杂、节流温升大,会造成阀芯发生变形而引起卡滞现象,为此,对多路阀进行了流固热耦合数值模拟仿真研究。首先,利用AMESim和UG软件对负载敏感多路阀进行了建模;然后,利用ICEM对流体域及固体域进行了网格划分;最后,采用ANSYS Workbench平台,在不同工况下对多路阀进行了流固热耦合数值模拟仿真,分析了不同工况下多路阀流场内流体速度、压力分布、节流温升、气穴气蚀以及阀芯变形的情况。研究结果表明:阀芯与油液接触的区域温度受影响较大,而远离油液的区域阀芯温度变化不明显,在油液温度影响下,阀芯上节流槽区域发生膨胀变形,说明节流温升对阀芯的影响主要集中在节流槽附近区域;当主阀口开口度较大,压力补偿器开度较小时,阀内易出现气穴,产生气蚀现象,节流槽处温升非常明显,阀芯变形量较大,容易引起卡滞现象;该研究结论可为多路阀阀芯的结构设计提供理论支撑。  相似文献   

10.
满足油液清洁度要求的液压油中仍存在固体颗粒物,这些固体颗粒在油液带动下会撞击滑阀空间流道,使滑阀产生冲蚀磨损,导致其性能退化。针对上述问题,结合计算流体力学与冲蚀理论,进行了滑阀磨损过程的数值模拟,得到滑阀全寿命周期磨损规律:滑阀的进出口压差增大,使颗粒的撞击速度和颗粒流量增大,加剧了滑阀磨损;阀口开度增大,节流口处从层流转变至湍流,同时也增大了颗粒流量,使滑阀磨损程度增大,且在不同阀口开度下,滑阀的磨损区域不同;同一节流口处,不同的油液流向,节流边两侧的磨损程度不同;节流磨损轮廓表明,阀芯的径向磨损和阀套的轴向磨损会导致滑阀控制性能下降,且阀芯的磨损较阀套更严重。  相似文献   

11.
对非全周开口滑阀内部流道进行了三维建模,并用CFD软件fluent对模型进行计算分析。研究发现滑阀阀腔内的流场在节流口前后变化较大,在阀腔和阀座的拐角处存在涡流,而增大阀腔内的压力可以减小涡流的形成。阀芯受到的稳态液动力随着流量的增大而增大,随着阀口开度的增大而减小。滑阀进出口的压力损失主要是由于油液在节流口处的节流特性引起的,而阀腔内部的涡流和油液的黏性摩擦引起的压力损失只占很小一部分。  相似文献   

12.
针对国产多路阀微动特性差的特点,为实现多路阀主阀芯在微小动作时的控制精度,提出了改变二通压力补偿阀阀口结构,从而改善多路阀微动特性的方法。通过建立负载敏感多路阀系统数学模型,并采用MATLAB编制动态仿真程序,对二通压力补偿阀两种不同阀口结构对整阀微动特性的影响进行仿真,分析并得出改善后的二节圆弧形节流槽型式能提高小流量工况下系统稳态输出流量的线性度、分辨率和控制精度,同时减小动态响应过程中主阀口的压差波动和响应时间。  相似文献   

13.
利用Fluent软件对多路阀主阀芯其中一联的内部流场进行仿真,分析不同阀口开度对流场内流体速度情况的影响,并模拟出阀口开度——流量曲线,为内部流场特征提供预测依据。  相似文献   

14.
内流式滑阀壁面压力分布可视化计算及试验验证   总被引:2,自引:0,他引:2  
针对现有液压阀流场(Computational fluid dynamics,CFD)仿真研究中,采用单相流模型进行计算,忽略了流体气化现象对流体密度及其流场的影响,仿真所得相对压力过低与实际不符的问题,运用Fluent软件,采用两相流模型,研究内流式滑阀流场分布,分析阀口开度、流量变化对于阀芯壁面压力分布及其稳态液动力的影响;设计一种壁面压力分布测量的试验方案,测量得到阀芯壁面的压力分布,并通过表面积积分法求出阀芯所受稳态液动力。结果表明:试验所得的内流式滑阀的壁面压力分布及其稳态液动力与仿真结果趋势一致,壁面压力峰值随着阀口开度的增大而减小;阀口开度较小时,稳态液动力的方向为阀口关闭的方向,在阀口开度达到临界点时,稳态液动力的方向为阀口打开的方向;滑阀稳态液动力公式计算由于忽略了入口射流角的变化及其出口处的动量,得到的稳态液动力误差较大,且方向始终指向阀口打开的方向。  相似文献   

15.
现有多路阀存在大流量低压损控制难、动态特性差等问题,且阀芯机械固联,压损大、自由度低,难以满足高端主机对操纵性、节能性、智能化、负载适应性的需求。为此,基于插装阀大流量控制特性好和滑阀微动性能好的优点,创新提出换向滑阀的进出口串接两个流量放大型比例插装阀的新构型,研制串联阀芯阀口独立控制多路阀。两个插装阀可以根据控制需求设计为流量控制或压力控制功能,系统自由度高,具有很高的智能化潜力。为了实现流量和压力的高精度冗余控制,设计串联式双级位移闭环+并联式流量/压力闭环控制策略,通过仿真研究位置、流量、压力三种工作模式下阀的特性。并试制样阀,搭建试验台对压损特性、位移滞环、流量控制特性、动态响应特性和稳态负载特性进行了测试。结果表明,样阀额定流量达到300 L/min,主阀位移滞环小于1%;主阀阶跃响应小于35 ms,具有较高的动态特性;流量最大偏差小于5%,流量控制精度高。  相似文献   

16.
针对现有负载口独立控制双阀芯多路阀结构复杂,控制难度大的问题,结合负载敏感压力补偿技术,提出了一种具有三级结构的新型双阀芯多路阀,该阀结构简单紧凑,控制方便可靠,应用场景灵活多变。结合新型双阀芯多路阀在起重机卷扬动作控制上的应用,基于AMESim软件对其进行了仿真分析。仿真结果表明新型双阀芯多路阀具有较好的电流-流量特性、负载敏感特性,同时,与传统负载敏感系统相比,该双阀芯多路阀负载敏感系统节能效果优势明显。  相似文献   

17.
考虑阀芯与阀套之间的径向间隙,建立具有对称均等负开口量的液压滑阀压力特性数学模型,得到了负开口滑阀的压力特性曲线族及其基本特征,分析了径向间隙和负开口量对滑阀压力特性的影响。结果表明:具有负开口量的液压滑阀的压力特性曲线在阀芯位移等于负开口量处存在拐点,在拐点前假设为层流流动,因此负载压力随阀位移变化曲线是线性的,在拐点后为紊流流动,因此负载压力与阀位移成非线性关系;负开口滑阀可弥补阀芯阀套径向间隙的泄漏量,其压力增益随着负开口量的增加而降低;所建立的数学模型,可为电液伺服阀、高端比例阀以及多路滑阀的研制和分析提供技术支撑。  相似文献   

18.
针对挖掘机多路阀阀口易发生冲蚀磨损导致性能下降及失效的问题,以回转联作为研究对象,建立了以DPM离散相模型和Edwards冲蚀模型为基础的计算模型,并通过Fluent软件模拟了不同流量、阀口开度和颗粒属性下的阀口冲蚀磨损情况,针对发生冲蚀磨损最严重的阀芯区域,分析并得到了冲蚀磨损分布和冲蚀磨损率随流量、阀口开度和颗粒属性的演化规律。结果表明:阀口的冲蚀磨损情况会随流量、阀口开度和颗粒属性的变化而规律变化,对于阀芯部位,磨损面积会随阀口开度变小而变小、随流量增大而增大;开度减小和流量的增加会引起阀芯冲蚀磨损率增大,其中冲蚀磨损率对阀口开度的变化较为敏感,在小开度情况下会出现磨损率的大梯度变化情况,而流量则对冲蚀磨损率影响较为平缓;当固体颗粒在油液中的质量一定时,颗粒直径的变化对阀芯冲蚀磨损率有较大影响。  相似文献   

19.
针对滑阀液动力的优化问题,对非全周开口、内流式滑阀流场特性进行了研究,对其阀套结构进行了优化。首先,采用两相流模型,利用动网格技术、UDF功能模拟了阀芯的运动状态,通过仿真计算了阀芯运动状态下的瞬态流场,同时分析了阀芯静止时的稳态流场;然后,研究了滑阀阀芯的运动速度、流量变化、阀口开度对液动力的影响;最后,提出了一种把阀套进油孔由直孔改为斜孔的方法来优化滑阀的液动力,并对不同倾斜角和阀口开度时的滑阀液动力进行了比较。研究结果表明:相较于瞬态液动力,滑阀的稳态液动力更大;在阀芯运动速度快、流量大,且阀口开度小于0.5 mm时,滑阀的瞬态液动力比较大,因而其影响也不可忽视;优化后的阀套结构可以有效减小液动力,倾斜角在15°~20°范围内时其优化效果最好;该研究结果可为滑阀结构的优化设计提供有益的参考。  相似文献   

20.
针对高端液压元件因滑阀冲蚀磨损引起阀口轮廓变动与性能不确定性问题,考虑颗粒物撞击阀口的概率事件,提出了基于Edwards冲蚀模型的全周边滑阀冲蚀圆角定量计算方法,并以阀控对称缸为例,揭示了四边滑阀各阀口冲蚀后的轮廓及阀特性的演化规律。研究结果表明,阀口的冲蚀圆角由颗粒物尺寸、颗粒物数量、撞击速度、阀口大小等因素直接决定;阀口流量越大、颗粒物数量越多、压差越大,颗粒物的撞击速度就越大;颗粒物尺寸相对阀口开度越大,颗粒物撞击阀口的概率就越大;在阀控缸动力机构中,液压缸的结构尺寸、运动速度、负载决定了各个阀口流量、压降和阀口开度。在负载恒定、液压缸恒速情况下,阀控对称缸4个阀口的流量相同但压降不同,冲蚀后的阀口圆角不一致。冲蚀导致滑阀压力增益降低,泄漏量增大,且产生零偏,零偏位移可通过惠斯通桥路平衡原理求出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号