首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the reliable synchronization problem between two non-identical chaotic fractional order systems. In this work, we present an adaptive feedback control scheme for the synchronization of two coupled chaotic fractional order systems with different fractional orders. Based on the stability results of linear fractional order systems and Laplace transform theory, using the master-slave synchronization scheme, sufficient conditions for chaos synchronization are derived. The designed controller ensures that fractional order chaotic oscillators that have non-identical fractional orders can be synchronized with suitable feedback controller applied to the response system. Numerical simulations are performed to assess the performance of the proposed adaptive controller in synchronizing chaotic systems.  相似文献   

2.
Ni  Junkang  Liu  Ling  Liu  Chongxin  Hu  Xiaoyu 《Nonlinear dynamics》2017,89(3):2065-2083

This paper presents fractional order fixed-time nonsingular terminal sliding mode control for stabilization and synchronization of fractional order chaotic systems with uncertainties and disturbances. First, a novel fractional order terminal sliding mode surface is proposed to guarantee the fixed-time convergence of system states along the sliding surface. Second, a nonsingular terminal sliding mode controller is designed to force the system states to reach the sliding surface within fixed-time and remain on it forever. Furthermore, the fractional Lyapunov stability theory is used to prove the fixed-time stability and the robustness of the proposed control scheme and estimate the upper bound of convergence time. Next, the proposed control scheme is applied to the synchronization of two nonidentical fractional order Liu chaotic systems and chaos suppression of fractional order power system. Simulation results verify the effectiveness of the proposed control scheme. Finally, some application issues about the proposed scheme are discussed.

  相似文献   

3.
Fractional order models of a spring/spring-pot and spring/spring-pot/actuator element connected into a multibody system are proposed in order to represent smart materials and components in adaptronic systems by introducing new tuning parameter. The models are introduced into dynamic equations via generalized forces and using the Lagrange's equations of the second kind in covariant form. Generalized forces are derived by taking into account fractional order derivatives in force–displacement relations and by using the principle of virtual work. The numerical scheme for solving fractional order differential equations proposed in Atanacković and Stanković (2008) is used in order to approximate fractional order derivative of a composite function appearing in the presented fractional order model. Numerical example for the multibody system with three degrees of freedom is presented. The results obtained for generalized forces are compared for different values of parameters in the fractional order derivative model.  相似文献   

4.
In this paper, the time-scaled trapezoidal integration rule for discretizing fractional order controllers is discussed. This interesting proposal is used to interpret discrete fractional order control (FOC) systems as control with scaled sampling time. Based on this time-scaled version of trapezoidal integration rule, discrete FOC can be regarded as some kind of control strategy, in which strong control action is applied to the latest sampled inputs by using scaled sampling time. Namely, there are two time scalers for FOC systems: a normal time scale for ordinary feedback and a scaled one for fractional order controllers. A new realization method is also proposed for discrete fractional order controllers, which is based on the time-scaled trapezoidal integration rule. Finally, a one mass position 1/sk control system, realized by the proposed method, is introduced to verify discrete FOC systems and their robustness against saturation non-linearity.  相似文献   

5.
In this paper, the time-scaled trapezoidal integration rule for discretizing fractional order controllers is discussed. This interesting proposal is used to interpret discrete fractional order control (FOC) systems as control with scaled sampling time. Based on this time-scaled version of trapezoidal integration rule, discrete FOC can be regarded as some kind of control strategy, in which strong control action is applied to the latest sampled inputs by using scaled sampling time. Namely, there are two time scalers for FOC systems: a normal time scale for ordinary feedback and a scaled one for fractional order controllers. A new realization method is also proposed for discrete fractional order controllers, which is based on the time-scaled trapezoidal integration rule. Finally, a one mass position 1/s k control system, realized by the proposed method, is introduced to verify discrete FOC systems and their robustness against saturation non-linearity.  相似文献   

6.
In this paper, the stability conditions and chaotic behaviors of new different fractional orders of reverse butterfly-shaped dynamical system are analytically and numerically investigated. Designing an appropriate feedback controller, the fractional order chaotic system is synchronized. Applying the synchronized fractional order systems in digital cryptography, a well secured key system is obtained. The numerical simulations are given to validate the correctness of the proposed synchronized fractional order chaotic systems and proposed key system.  相似文献   

7.
In this paper, a novel fractional-order terminal sliding mode control approach is introduced to control/synchronize chaos of fractional-order nonautonomous chaotic/hyperchaotic systems in a given finite time. The effects of model uncertainties and external disturbances are fully taken into account. First, a novel fractional nonsingular terminal sliding surface is proposed and its finite-time convergence to zero is analytically proved. Then an appropriate robust fractional sliding mode control law is proposed to ensure the occurrence of the sliding motion in a given finite time. The fractional version of the Lyapunov stability is used to prove the finite-time existence of the sliding motion. The proposed control scheme is applied to control/synchronize chaos of autonomous/nonautonomous fractional-order chaotic/hyperchaotic systems in the presence of both model uncertainties and external disturbances. Two illustrative examples are presented to show the efficiency and applicability of the proposed finite-time control strategy. It is worth to notice that the proposed fractional nonsingular terminal sliding mode control approach can be applied to control a broad range of nonlinear autonomous/nonautonomous fractional-order dynamical systems in finite time.  相似文献   

8.
In this paper, the stabilization of linear time-invariant systems with fractional derivatives using a limited number of available state feedback gains, none of which is individually capable of system stabilization, is studied. In order to solve this problem in fractional order systems, the linear matrix inequality (LMI) approach has been used for fractional order systems. A shadow integer order system for each fractional order system is defined, which has a behavior similar to the fractional order system only from the stabilization point of view. This facilitates the use of Lyapunov function and convex analysis in systems with fractional order 1<q<2. To this end, an extremum-seeking method is used for obtaining Lyapunov function and defining a suitable sliding sector in order to enable switching between available control gains for system stabilization. Consequently, using the LMI approach in fractional order systems, necessary and sufficient conditions are provided for stabilization of systems with fractional order 1<q<2 using a limited number of available state feedback gains which lead to variable structure control.  相似文献   

9.
This paper introduces a finite-time control technique for control of a class of non-autonomous fractional-order nonlinear systems in the presence of system uncertainties and external noises. It is known that finite-time control methods demonstrate better robustness and disturbance rejection properties. Moreover, finite time control methods have optimal settling time. In order to design a robust finite-time controller, a new nonsingular terminal sliding manifold is proposed. The proposed sliding mode dynamics has the property of fast convergence to zero. Afterwards, a novel fractional sliding mode control law is introduced to guarantee the occurrence of the sliding motion in finite time. The convergence times of both reaching and sliding phases are estimated. The main characteristics of the proposed fractional sliding mode technique are (1) finite-time convergence to the origin; (2) the use of only one control input; (3) robustness against system uncertainties and external noises; and (4) the ability of control of non-autonomous fractional-order systems. At the end of this paper, some computer simulations are included to highlight the applicability and efficacy of the proposed fractional control method.  相似文献   

10.
With the increasingly deep studies in physics and technology,the dynamics of fractional order nonlinear systems and the synchronization of fractional order chaotic systems have become the focus in scientific research.In this paper,the dynamic behavior including the chaotic properties of fractional order Duffing systems is extensively investigated.With the stability criterion of linear fractional systems,the synchronization of a fractional non-autonomous system is obtained.Specifically,an effective singly active control is proposed and used to synchronize a fractional order Duffing system.The numerical results demonstrate the effectiveness of the proposed methods.  相似文献   

11.
The stretch-twist-fold (STF) flow, as a special case of Stokes flows, arises naturally in dynamo theory. The paper studies the integrability of the STF flow. The paper provides a complete classification of the irreducible Darboux polynomials for the system with all values of the parameter alpha. When the parameter is zero, the STF flow is integrable. When the parameter is more than zero, it is proved not to be Darboux integrable. The paper also proves the system has neither exponential factors nor polynomial first integrals at the parameter alpha more than zero.  相似文献   

12.
This paper concerns the problem of robust control of uncertain fractional-order nonlinear complex systems. After establishing a simple linear sliding surface, the sliding mode theory is used to derive a novel robust fractional control law for ensuring the existence of the sliding motion in finite time. We use a nonsmooth positive definitive function to prove the stability of the controlled system based on the fractional version of the Lyapunov stability theorem. In order to avoid the chattering, which is inherent in conventional sliding mode controllers, we transfer the sign function of the control input into the first derivative of the control signal. The proposed sliding mode approach is also applied for control of a class of nonlinear fractional-order systems via a single control input. Simulation results indicate that the proposed fractional variable structure controller works well for stabilization of hyperchaotic and chaotic complex fractional-order nonlinear systems. Moreover, it is revealed that the control inputs are free of chattering and practical.  相似文献   

13.
Zhang  Qian  Wang  Hongwei  Liu  Chunlei 《Nonlinear dynamics》2022,108(3):2337-2351

Aiming at the difficult identification of fractional order Hammerstein nonlinear systems, including many identification parameters and coupling variables, unmeasurable intermediate variables, difficulty in estimating the fractional order, and low accuracy of identification algorithms, a multiple innovation Levenberg–Marquardt algorithm (MILM) hybrid identification method based on the fractional order neuro-fuzzy Hammerstein model is proposed. First, a fractional order discrete neuro-fuzzy Hammerstein system model is constructed; secondly, the neuro-fuzzy network structure and network parameters are determined based on fuzzy clustering, and the self-learning clustering algorithm is used to determine the antecedent parameters of the neuro-fuzzy network model; then the multiple innovation principle is combined with the Levenberg–Marquardt algorithm, and the MILM hybrid algorithm is used to estimate the linear module parameters and fractional order. Finally, the academic example of the fractional order Hammerstein nonlinear system and the example of a flexible manipulator are identified to prove the effectiveness of the proposed algorithm.

  相似文献   

14.
This paper deals with the stability problem in LTI fractional order systems having fractional orders between 1 and 1.5. Some sufficient algebraic conditions to guarantee the BIBO stability in such systems are obtained. The obtained conditions directly depend on the coefficients of the system equations, and consequently using them is easier than the use of conditions constructed based on solving the characteristic equation of the system. Some illustrations are presented to show the applicability of the obtained conditions. For example, it is shown that these conditions may be useful in stabilization of unstable fractional order systems or in taming fractional order chaotic systems.  相似文献   

15.
In this paper, we first verify that fractional order systems using Caputo’s or Riemann–Liouville’s derivative can be represented by the continuous frequency distributed model with initial value carefully allocated. Then, the relation of the stability between the fractional order system and its corresponding integer order system is discussed and it is proven that stability of integer order system implies the stability of its corresponding fractional order system under some mild conditions. Moreover, we extend the stability theorems to the finite-dimensional case since fractional order systems are always implemented by approximation. Some illustrative examples are finally provided to show the usage and effectiveness of the proposed stability theorems.  相似文献   

16.
This paper introduces a fractional order system which can generate regular oscillations or create chaos. It shows that this system is capable to create regular or nonregular oscillations under suitable conditions. These necessary conditions are achieved by violation of the no-chaos criteria. The effective dimension of the proposed system can be chosen any order less than three. Therefore, this system is a good example for limit cycle or chaos generation via fractional-order systems with low orders. Numerical simulations illustrate behavior of the proposed system in different situations.  相似文献   

17.
This is the second of two articles intended to develop, apply and verify a new method for averaging the momentum and mass transport equations for turbulence. Part I presented the theoretical development of a new space-time filter (STF) averaging procedure. The new method, as well as all existing averaging procedures, are applied to the one-dimensional transient equations of momentum and scalar transport in a Burgers' flow field. Dense-grid ‘exact’ results from the unaveraged equations are presented to depict the dynamic behaviour of the flow field and serve as a basis for verifying the coarse-grid STF predictions. In this paper, a finite difference procedure is used to numerically solve the new STF averaged equations, as well as the other forms of the averaged equations derived in Part I. All averaged equations are solved on the same coarse grid. The velocity and scalar fields, predicted from each equation form, are intercompared according to a verification procedure based on the statistical and spectral properties of the results. It is found that the new STF procedure improves coarse-grid dynamic predictions over the existing methods of averaging.  相似文献   

18.
Three new power law inequalities for fractional derivative are proposed in this paper. We generalize the original useful power law inequality, which plays an important role in the stability analysis of pseudo state of fractional order systems. Moreover, three stability theorems of fractional order systems are given in this paper. The stability problem of fractional order linear systems can be converted into the stability problem of the corresponding integer order systems. For the fractional order nonlinear systems, a sufficient condition is obtained to guarantee the stability of the true state. The stability relation between pseudo state and true state is given in the last theorem by the final value theorem of Laplace transform. Finally, two examples and numerical simulations are presented to demonstrate the validity and feasibility of the proposed theorems.  相似文献   

19.
In this paper, a fractional calculus-based terminal sliding mode controller is introduced for finite-time control of non-autonomous non-linear dynamical systems in the canonical form. A fractional terminal switching manifold which is appropriate for canonical integer-order systems is firstly designed. Then some conditions are provided to avoid the inherent singularities of the conventional terminal sliding manifolds. A non-smooth Lyapunov function is adopted to prove the finite time stability and convergence of the sliding mode dynamics. Afterward, based on the sliding mode control theory, an equivalent control and a discontinuous control law are designed to guarantee the occurrence of the sliding motion in finite time. The proposed control scheme uses only one control input to stabilize the system. The proposed controller is also robust against system uncertainties and external disturbances. Two illustrative examples show the effectiveness and applicability of the proposed fractional finite-time control strategy. It is worth noting that the proposed sliding mode controller can be applied for control and stabilization of a large class of non-autonomous non-linear uncertain canonical systems.  相似文献   

20.
The periodic motions of the fractional order and/or delayed nonlinear systems are investigated in the frequency domain using a harmonic balance method with the analytical gradients of the nonlinear quality constraints and the sensitivity information of the Fourier coefficients can also obtained. The properties of fractional order derivatives and trigonometric functions are utilized to construct the fractional order derivatives, delayed and product operational matrices. The operational matrices are used to derive the analytical formulae of nonlinear systems of algebraic equations. The stability of periodic solutions for the delayed nonlinear systems is identified by an eigenvalue analysis of quasi-polynomials characteristic equations. Sensitivity analysis is performed to study the influence of the structural parameters on the system responses. Finally, three numerical examples are presented to illustrate the validity and feasibility of the developed method. It is concluded that the proposed methodology has the potential to facilitate highly efficient optimization, as well as sensitivity and uncertainty analysis of nonlinear systems with fractional derivatives and/or time delayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号