首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reported below are the results from a study aimed at mitigating the deleterious alkali-silica reaction by using perlite powder as an admixture. The expansion of mortar bars containing various amounts of silica fume (SF), expanded perlite, and natural perlite was studied. Two kinds of reactive aggregates were used in the study: highly reactive river aggregate containing opal and marginally reactive monzo-diorite aggregate. Expanded perlite and silica fume were tested with both aggregate, separately; on the other hand, natural perlite was tested only with monzo-diorite aggregate. The bars were cast in accordance with ASTM C1260, accelerated mortar bar method, and were stored in NaOH solution for 30 days. Length changes were measured and reported. The results showed that both expanded and natural perlite powder (NPP) have potential to suppress the deleterious alkali-silica expansion.  相似文献   

2.
This study reports the results of investigation to assess the suitability of volcanic ash (VA) and pumice (VP) powder to be used as cement additives. Pozzolanic activity of VA and VP was tested according to the Italian standard and found to be acceptable. The strength activity index with Portland cement and the effectiveness of VA and VP admixture in controlling alkali-silica reaction and autoclave expansion were tested according to ASTM standards. Mortar cubes were specially prepared as per ASTM standards for these studies using different mixes with varying percentages of VA and VP (0-40%) as cement replacement. The results are then compared with ASTM requirements to assess the suitability of VA or VP as cement additives.  相似文献   

3.
Experimental studies have been carried out for understanding why soft and fluid hydrated alkali silicate generated by the alkali-silica reaction (ASR) of aggregate with alkaline pore solution accumulates the expansive pressure for cracking the aggregate and the surrounding concrete. The elemental analysis of aggregate (andesite) embedded in a cement paste has revealed that the alkali silicate has no ability of generating expansive pressure unless the aggregate is tightly packed with a reaction rim. The reaction rim is slowly generated from the alkali silicate that covers the ASR-affected aggregate. Consumption of alkali hydroxide by the ASR induces the dissolution of Ca2+ ions into the pore solution. The alkali silicate then reacts with Ca+ ions to convert to an insoluble tight and rigid reaction rim. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that the alkali silicate generated afterward by the ASR is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The ASR of very tiny aggregate such as fly ash and municipal waste incinerator bottom ash may not cause the deterioration of concrete, since the ASR is completed before the formation of reaction rims.  相似文献   

4.
This paper investigates the effects of cementitious systems containing Portland cement (PC), silica fume (SF) and fly ash (FA) on the expansion due to alkali-silica reaction (ASR). Concrete prisms were prepared and tested in accordance with the Canadian Standards Association (CSA A23.2-14A). Paste samples were cast using the same or similar cementitious materials and proportions that were used in the concrete prism test. Pore solution chemistry and portlandite content of the paste samples are reported. It was found that practical levels of SF with low-, moderate- or high-calcium FA are effective in maintaining the expansion below 0.04% after 2 years. Pore solution chemistry shows that while pastes containing SF yield pore solutions of increasing alkalinity at ages beyond 28 days, pastes containing ternary blends maintain the low alkalinity of the pore solution throughout the testing period (3 years).  相似文献   

5.
Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites.  相似文献   

6.
Development of non-destructive methods, developed specifically for assessing the damage induced by alkali-silica reaction (ASR) in concrete structures, is needed in order to carry out a systematic evaluation of the concrete condition. The aim of this study is to monitor the evolution of the ASR-damage in laboratory with concrete samples with ultrasonic pulse velocity and attenuation of ultrasonic waves methods. For this study, results of both methods were compared with expansion and mass variation.One reactive concrete mixture was made with reactive aggregate, and one other mixture, incorporating non-reactive aggregate, was made as a control. Specimens were kept at 38 °C in a 1 mol l− 1 NaOH solution to accelerate the reaction. Attenuation of transmitted ultrasonic waves appeared to be more appropriate for the evaluation of ASR-damage compared with pulse velocity. The attenuation of accelerated reactive concrete cylinders increased by 90% after 1 year while it increased by 40% for the non-reactive concrete used as a control. Major part of the attenuation increase in the non-reactive concrete is due to liquid absorption.This work suggests that in-situ non-destructive techniques based on ultrasonic wave attenuation, like ultrasonic attenuation tomography, should be developed in order to evaluate the development of ASR in concrete structures. Petrographic examination confirmed that damage to concrete is associated with ASR.  相似文献   

7.
A practical alkali reactive aggregate-Beijing aggregate was used to test the long-term effectiveness of LiOH in inhibiting alkali-aggregate reaction (AAR) expansion. In this paper, the most rigorous conditions were so designed that the mortar bars had been cured at 80 °C for 3 years after being autoclaved for 24 h at 150 °C. At this condition, LiOH was able to inhibit long-term alkali-silica reaction (ASR) expansion effectively. Not only was the relationship between molar ratio of n(Li)/n(Na) and the alkali contents in systems established, but also the governing mechanism of such effects was studied by SEM.  相似文献   

8.
This paper investigates the decomposition of three clayey structures (kaolinite, illite and montmorillonite) when thermally treated at 600 °C and 800 °C and the effect of this treatment on their pozzolanic activity in cementitious materials. Raw and calcined clay minerals were characterized by the XRF, XRD, 27Al NMR, DTG and BET techniques. Cement pastes and mortars were produced with a 30% substitution by calcined clay minerals. The pozzolanic activity and the degree of hydration of the clinker component were monitored on pastes using DTG and BSE-IA, respectively. Compressive strength and sorptivity properties were assessed on standard mortars. It was shown that kaolinite, due to the amount and location of OH groups in its structure, has a different decomposition process than illite or montmorillonite, which results in an important loss of crystallinity. This explains its enhanced pozzolanic activity compared to other calcined clay–cement blends.  相似文献   

9.
At 20 °C, alkali-aggregate reaction (AAR) expansion of mortar incorporated zeolitization perlite could be long-term effectively inhibited by LiOH and the effect increased with the augment of Li/(Na+K) molar ratio. Mortar strength would decrease when LiOH was added. The more LiOH was added, the more the strength would decrease. In addition, there was more effect on 28 days' strength than 3 days', and the influence degree of LiOH to compressive strength was higher than that to flexural one. The initial and final setting times of cement were shortened when LiOH was added, and the more Li/(Na+K) molar ratio of LiOH was added, the more the setting time was cut down. Not only mortar bar expansion, the change in 20 °C, but also, the evidence of reaction and the composition of reaction products after 4-year curing was studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). It was found that when both Li+ and K+ (Na+) were added, more Li+ reacted to form some matter that not as the same as normal alkali-silica reaction (ASR) gel, especially for its nonexpansive property. Such might be the main reason of the phenomenon that ASR expansion could be inhibited by adding lithium compounds.  相似文献   

10.
Lithium additives have been shown to reduce expansion associated with alkali-silica reaction (ASR), but the mechanism(s) by which they act have not been understood. The aim of this research is to assess the effectiveness of three lithium additives—LiOH, LiCl, and LiNO3—at various dosages, with a broader goal of improving the understanding of the means by which lithium acts. The effect of lithium additives on ASR was assessed using mortar bar expansion testing and quantitative elemental analysis to measure changes in concentrations of solution phase species (Si, Na, Ca, and Li) in filtrates obtained at different times from slurries of silica gel and alkali solution. Results from mortar bar tests indicate that each of the lithium additives tested was effective in reducing expansion below an acceptable limit of 0.05% at 56 days. However, different lithium additive threshold dosages ([Li2O]/[Na2Oe]) were required to accomplish this reduction in expansion; these were found to be approximately 0.6 for LiOH, 0.8 for LiNO3, and 0.9 for LiCl. Quantitative elemental analysis indicated that sodium and lithium were both bound in reaction products formed within the silica gel slurry. It is also believed that lithium may have been preferentially bound over sodium in at least one of the reaction products because a greater percent decrease in dissolved lithium than dissolved sodium was observed within the first 24 h. It appears that lithium additives either decreased silica dissolution, or promoted precipitation of silica-rich products (some of which may be nonexpansive), because the dissolved silica concentration decreased with increasing dosage of lithium nitrate or lithium chloride additive.  相似文献   

11.
The alkali-silica expansion of mortar specimens bearing fly ash (FA), lithium carbonate, and lithium fluoride under long-term accelerated curing was investigated. ASTM C1260 standard test method was applied and expansions were recorded up to 56 days. The composition of alkali-silica reaction (ASR) products was also studied by environmental scanning electron microscopy (ESEM). It was observed that in Li-bearing mixtures, the expansions ceased beyond 28 days. However, in fly-ash-bearing mixtures, the reactions were continued and expansions were increased steadily throughout the test. No clear correlation was found between the composition of massive reaction products and expansion values. However, except for lithium-fluoride-bearing samples, good correlation was observed between the composition of crystallized reaction products and expansion values.  相似文献   

12.
13.
Correct use of SiMn slags requires a detailed knowledge of their properties, as chemical and mineralogical composition, pozzolanic activity, reaction kinetics, setting time, volume expansion and strength play important role in the final valorisation of SiMn slag as pozzolanic material. This kind of slag is formed mainly of SiO2 and CaO, followed by Al2O3 and MnO which sum is nearly 90%. Sulphites content of 0.42% was detected. The main crystalline compound identified in SiMn slag is akermanite.The results obtained show that SiMn slag blended cements do not show volume instability, the strength values are very close to the control mortar and they have a denser matrix. SiMn blended matrices fulfil standard specification requirements (chemical, physical and mechanical ones) and show that SiMn slag is suitable for blended cements manufacture.  相似文献   

14.
This paper summarizes findings from a research study conducted at the University of New Brunswick in collaboration with the University of Texas at Austin, and CANMET-MTL, on the effect of LiNO3 on ASR in new concrete. The studies included expansion testing, silica dissolution measurements and microstructural examinations of cement systems containing glass and two different reactive aggregates (NB and NS). Only a small proportion of the data are presented here for the purpose of highlighting the principal findings of this investigation.Based on these findings, it is proposed that the inhibiting effect of LiNO3 against ASR in new concrete is attributed to the formation of two reaction products in the presence of lithium, these being a crystalline lithium silicate compound (Li2SiO3) crystal and a Li-bearing, low Ca silica gel. These two phases could serve as a diffusion barrier and protective layer to prevent the reactive silica from further attack by alkalis.It was found that the reason the two reactive aggregates selected responded differently to LiNO3 was due to the difference in their textural features. The NB aggregate contained reactive volcanic glass particles, the surface of which was immediately and equally available to sodium, potassium and lithium, and thus a Li-Si barrier was able to form quickly. The reactive phase in the NS aggregate was microcrystalline and strained quartz, which was embedded in a dense matrix of a non-reactive predominantly alumino-silicate phase and was not easily accessible to lithium.  相似文献   

15.
Concrete cylinders, 255 mm in diameter, were made with high- and low-alkali cements, a highly alkali-silica-reactive coarse aggregate, and subjected to various conditions at 38 °C: (1) immersion in 3% NaCl solution; (2) immersion in 6% NaCl solution; (3) humid air at 100% RH, and (4) 14-day cycles including 12 days in humid air, 2 days of drying, and 3 h in 6% NaCl solution. After 1 year, a number of cylinders were drilled to obtain dry powder samples from different depths, which were analyzed for total and soluble chloride and for soluble sodium and potassium. Concrete cores were also taken in a number of parapets and abutments, either exposed to deicing salts or not, on which chemical analyses were also performed on slices taken at different depths from the exposed surface. The results obtained suggest that making concrete with a low-alkali content is an effective way to prevent expansion due to alkali-silica reaction even for concretes exposed to seawater or deicing salts; this is attributed to the fact that the OH ion concentration in the pore solution, and then the pH, is decreased in the near-surface layers of concrete exposed to sodium chloride, which does not penetrate at depth in concrete.  相似文献   

16.
The alkali-aggregate reaction (AAR) in high-strength concrete and the effect of ground granulated blast-furnace slag (GGBFS) were studied in this paper. From the results of this study, following conclusions can be drawn:
(1)
In high-strength concrete, because of high alkali content, the possibility of alkali-aggregate reaction is much higher than conventional concrete.
(2)
The occurrence of large expansion can be prevented by using nonreactive aggregate, which has been judged according to the mortar bar and chemical method's as specified in JIS A 5308, in high-strength concrete.
(3)
The replacement of cement by 30% of blast-furnace slag and using low-alkali cement can prevent the alkali-aggregate reaction from causing large expansion in high-strength concrete.
  相似文献   

17.
This work aims to study the effect of substitution of fly ash for homra on the hydration properties of composite cement pastes. The composite cements are composed of constant proportion of OPC (80%) with variable amounts of fly ash and homra. The addition of fly ash accelerates the initial and final sitting time, whereas the free lime and combined water contents decrease with fly ash content. The fly ash acts as nucleation sites which may accelerate the rate of formation of hydration products which fill some of the pores of the cement pastes. The fire resistance of composite cement pastes was evaluated after firing at 250, 450, 600, 800 °C with rate of firing 5 °C/min with soaking time for 2 h. The physico-mechanical properties such as bulk density and compressive strength were determined at each firing temperature. Moreover, the phase composition, free lime and microstructure for some selected samples were investigated. It can be concluded that the pozzolanic cement with 20 wt% fly ash can be used as fire resisting cement.  相似文献   

18.
In Phase I, particles from 17 different aggregates, 1.25-5 mm in size, were immersed in continuously agitated solutions at 38 °C: distilled water, Ca(OH)2-saturated solution, 0.7 M NaOH (measurement of K supply), and 0.7 M KOH (measurement of Na supply). These solutions were periodically analysed for K and/or Na up to 578 days. More alkalies were released in alkaline solutions than in lime-saturated solution, with lower values in water. After 578 days, the aggregates released between <0.01% and 0.19% Na2Oe, excluding the nepheline-rich aggregate tested (0.68%). This would correspond to a contribution to concrete from <0.1 to 3.4 kg/m3 Na2Oe (12.7 for the phonolite), based on an aggregate content of 1850 kg/m3. In general, the feldspar-rich aggregates released significantly more alkalies. In Phase II, the water-soluble alkali content of mass concrete elements from many dams was measured using a hot water extraction method. The values obtained often largely exceed the soluble alkali content expected to be released by the cement used. These results thus also suggest that large amounts of alkalies were supplied with time by the aggregates, particularly by feldspar-rich ones.  相似文献   

19.
Scanning Electron Microscopy Image Analysis (SEM-IA) was used to quantify the degree of alkali silica reaction in affected microbars, mortar and concrete prisms. It was found that the degree of reaction gave a unique correlation with the macroscopic expansion for three different aggregates, stored at three temperatures and with two levels of alkali. The relationships found for the concretes and the mortars overlap when normalised by the aggregate content. This relationship seems to be linear up to a critical reaction degree which coincides with crack initiation within the reactive aggregates.  相似文献   

20.
Tuffs from Galatean Volcanic Province were studied for their use as admixtures in pozzolanic cements. The effects of petrographical properties on the pozzolanic activity of mortar specimens were investigated by optical microscopy, X-ray powder diffraction (XRD), scanning electron microscope equipped with an energy dispersive X-ray system (SEM-EDX), and chemical analysis. The chemical compositions of tuffs conform well to the requirements of ASTM C 618 and the Turkish Standard TS 25, and SiO2+Al2O3+total Fe2O3 exceeds 70%. Pozzolanic activities were determined according to their 7th day flexural and compressive strengths and vary between 1.7 and 3.0 MPa and 7.4 and 16.0 MPa, respectively. The mechanical strength of mortars is affected by alteration of tuffs used in the mixture. Clay minerals and zeolites form by the alteration of volcanic glass, which is the most reactive phase and has a reducing effect on mechanical strength. The alteration also causes the enrichment of tuffs with respect to K2O+Na2O. The methods used provided rapid evaluation of tuffs as potential admixtures in cements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号