首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Through investigating and comparing the fatigue behavior of an as-cast Mg–7%Gd–5%Y–1%Nd–0.5%Zr alloy in both laboratory air and 3.5 wt.% NaCl solution, the effect of corrosion attack on fatigue crack initiation has been disclosed. The S–N curves showed that the fatigue strength in air was 120 MPa and not sensitive to the loading frequency, whereas the fatigue strength in NaCl solution decreased from 80 MPa to 60 MPa with the loading frequency decreasing from 20 Hz to 5 Hz. Observations to fracture surfaces demonstrated that in air, fatigue cracks preferentially initiated at the oxide inclusions. However, the fatigue crack initiation in NaCl solution was associated with corrosion pits. Moreover, multiple fatigue cracks initiated at pits on fracture surfaces of corrosion fatigue failed samples when the loading frequency decreased to 5 Hz. Based on the measured “defect area” of oxide inclusions, the predicted fatigue strength in air could be well fitted with the experimental data. However, due to the occurrence of hydrogen embrittlement and crack initiation at multiple sites, the fatigue strength of samples tested in NaCl solution cannot be predicted.  相似文献   

2.
Rotating bending fatigue test at very high cycle regimes was carried out on martensitic steel of 2Cr13 in air and 3.5% NaCl environment. The result showed that the S–N curve presents a stepwise tendency over the range of 106–108 cycles in both air and 3.5% NaCl environment. In air fatigue, cracks initiated from the sample surface and inclusions at subsurface and no typical fish eye feature in very high cycle fatigue were observed for all samples tested up to 6 × 108 cycles. In 3.5% NaCl solution, a fatigue limit over the range of 106–108 cycles exhibited with the corrosion fatigue strength reduced by 47% compared to the air fatigue. Multiple cracks initiated from surface and the number of crack origins increased with increasing stress level and surface proportion of fatigue propagation increased as number of cycles increased.  相似文献   

3.
CRACK NUCLEATION AND PROPAGATION IN BLADE STEEL MATERIAL   总被引:1,自引:0,他引:1  
Stress corrosion cracking and corrosion fatigue of 12 Cr steel in sodium chloride solution has been investigated. Tests have been performed in air at room temperature and in aqueous solution with 22% NaCl at 80°C. The influence of corrosion pits on crack nucleation has been investigated. On fracture surfaces tested in environment (22% NaCl solution), crack initiation was observed in correspondence with corrosion pits; in this case fatigue life can be described using a fracture mechanics approach. The ΔK value for crack nucleation from a pit in rotating bending fatigue tests is very low in air (about 3 MPa√m). The results of slow strain rate tests on smooth specimens show that there is a threshold stress intensity, KISCC, of about 15 MPa√m and a plateau in stress corrosion crack growth rate of about 10-5mm/s.  相似文献   

4.
采用哑铃状平板试样,分别研究了16Mn钢在空气中和3.5%NaCl溶液中的疲劳行为,获得了S-N曲线,并对疲劳试样的表面和断口形貌进行了观察。结果表明:3.5%NaCl溶液(与空气相比)使16Mn钢的疲劳强度有较大程度的降低,在空气中16Mn钢的疲劳极限为200 MPa,而在3.5%NaCl溶液中该钢则不存在疲劳极限;空气中的疲劳试样只有一个萌生于试样表面基体的裂纹源,而3.5%NaCl溶液中该钢的疲劳试样一般有多个裂纹源,除了极少数萌生于试样表面基体处,其余均萌生于表面的点蚀坑;空气中疲劳试样裂纹扩展区的断口形貌以疲劳辉纹为主,而3.5%NaCl溶液中的则以沿晶开裂等脆性特征为主。此外还对空气中16Mn钢的疲劳极限进行了预测,预测值与试验值基本吻合。  相似文献   

5.
Fatigue properties of two Al-containing steels have been investigated by rotating bending fatigue tests. Results show that the fatigue limits (the fatigue strength at 107 cycles) were improved remarkably by plasma nitriding due to the high hardness of 1000 Hv and compressive stress of 400 MPa in the nitrided layer. Scanning electron microscopic observations show that after nitriding the fatigue crack initiation sites moved from the surface flaws or near-surface matrix into the AlN inclusions at around the case-core interface. Degassing treatment can increase the fatigue limit because it prevented fatigue crack initiation at AlN inclusions due to the reduced [N] contents and refined inclusion size.  相似文献   

6.
Abstract

In this study, the growth behaviour of short fatigue cracks in En7A steel with a high content of elongated MnS inclusions was investigated by generating and evaluating the short crack data under different loading conditions for the six principal specimen orientations. Short cracks showed a strong anisotropic behaviour in which they grew muchfaster in the transverse and short transverse orientations than in the longitudinal orientations in all fatigue processes. This was due to the relatively high content of the elongated inclusions. Inclusion induced anisotropy is also observed in the percentages of fatigue life of the initiation and growth periods of short cracks which may result in inaccurate fatigue life predictions. Inclusion induced anisotropy was the result of strain intensification at the matrix/inclusion interface.

MST/3250A  相似文献   

7.
This paper presents a new mechanism controlling the acceleration of fatigue crack growth of a hydrogen-charged high-strength steel (bearing steel SAE52100, ?? ult?>?1, 900MPa, HV =?569). Three- dimensionally complicated shape of a primary crack and secondary cracks were observed in hydrogen- charged specimens. Marked acceleration of fatigue crack growth in the presence of hydrogen was observed particularly at low test frequency, and was attributed to the initiation and successive coalescence of secondary cracks formed ahead of primary crack. These secondary cracks were produced along prior-austenite grain boundaries and carbide boundaries, or by direct cracking of carbides. Surprisingly, secondary cracks were observed outside the ordinary plastic zone ahead of the crack tip. TEM observation elucidated that the secondary cracks outside the crack tip plastic zone were produced by hydrogen-induced deformation twins impinging on grain boundaries and carbides. These results suggest a new mechanism of the acceleration of fatigue crack growth rates in high-strength steels caused by hydrogen-induced deformation twins, rather than due to hydrogen- enhanced localized plasticity. The phenomena associated with time dependent fatigue crack growth are presumed to be correlated with the initiation and coalescence of secondary cracks in the presence of hydrogen.  相似文献   

8.
Abstract— Single-pitted specimens of an HSLA steel, were tested in laboratory air and in 1 M NaCl solution to study the influence of a corrosive environment on its fatigue life.
The growth of fatigue cracks and the partitioning of the fatigue life into fatigue crack initiation and fatigue crack propagation were studied by photographing the pit and the cracks developing on it periodically during testing. Non-propagating or dormant surface cracks were not observed in this study. Fractography using SEM showed the locations of fatigue crack initiation. The mechanisms of corrosion fatigue were studied by performing tests in 1 M NaCl at different test frequencies. Corrosion pits proved to be crack initiation sites. Hydrogen embrittlement was found to be unimportant in the corrosion fatigue of HSLA steel in this study. The 1 M NaCl corrosive environment appeared to reduce the fatigue life of this material by a dissolution mechanism. The effect of pit depth was studied by testing specimens having various pit depths. An effect of pit size was apparent. Fatigue life decreased with increasing pit depth. Pit depth, rather than the ratio of pit depth to pit diameter, influenced fatigue behaviour. A non-damaging pit depth was found.  相似文献   

9.
The influence of an aggressive environment (0.6 M, aerated NaCl solution) on short fatigue crack initiation and growth behaviour has been studied. The study involved three major test series, namely: air fatigue, corrosion fatigue, and intermittent air fatigue/corrosion fatigue. The above tests carried out under fully reversed torsional loading conditions at a frequency of 5 Hz, showed that it was the non-metallic inclusions which took part in crack initiation resulting from debonding at metal matrix/inclusion interface and pitting of inclusions in both air and corrosove environments, respectively. Short fatigue crack growth results in these two environments obtained by using plastic replication technique, indicated a large effect of microstructure i.e. prior austenite grain boundaries. The stage/stages at which the environmental contribution was dominant has been discussed by considering the results achieved from intermittent tests. However, the mechanisms involved in corrosion fatigue short crack growth have also been described in the light of results obtained from futher investigations carried out by conducting corrosion fatigue tests under applied cathodic potential conditions and tests on hydrogen pre-charged specimens under air fatigue and uniaxial tension conditions.  相似文献   

10.
In this study, the initiation and early growth behaviour of short fatigue cracks in En 7A steel with a high content of elongated MnS inclusions was investigated, by generating and evaluating data on the growth of short fatigue cracks under various stress levels and stress ratios for the six principal specimen orientations. Short cracks usually initiated at the debonded interfaces between the matrix and the inclusions. If there was no debonding, cracking sometimes occurred in the inclusions. In the early stages, short cracks propagated by a mechanism of inclusion influenced growth. Under low stress levels, usually one short crack was initiated which dominated most of the fatigue life, while under high stress levels there was multicrack interaction.

MST/3249A  相似文献   

11.
The investigation of fatigue damage in corrosive environments is an important problem, because such environments reduce fatigue strength far below the typical fatigue strength determined in air. In this study, rotating bending fatigue tests of plain specimens in NaCl solution were carried out using a heat-treated 0.45% carbon steel, in order to clarify the physical background of corrosion fatigue damage. The emphasis is to perform the successive observations by the plastic replica method. The results show that corrosion pits are generated at the early stages of cycling, then most of them grow with further cycling until a crack is initiated from each corrosion pit. The initiation of corrosion pits from slip bands is only observed in the case when the stress range is relatively large, in the range of stress under which slip bands are produced in air. After initiation of a crack, a crack propogates by accompanying frequent interaction and coalescence with other cracks. The growth rate of an especially small crack in NaCl solution is larger than that in air. However, the growth rate of a comparatively large crack is smaller in NaCl solution than in air. Moreover, the statistical characteristics of corrosion fatigue behavior were investigated by exhibiting the distributions of crack initiation life and crack length.  相似文献   

12.
Abstract— When estimating fatigue damage quantitatively it is important to clarify its physical basis. In this study, rotating bending fatigue tests of a heat-treated 0.45% carbon steel were carried out in 3% NaCl solution, in order to clarify the physical basis of corrosion fatigue damage from successive observations of plastic replicas. The results show that corrosion pits are generated during the early stages of cycling, then most of them grow with further cycling until a crack is initiated from each corrosion pit. The initiation of corrosion pits from slip bands is observed only in the case when the stress range is relatively large, and in the range of stress for which slip bands are produced in air. After initiation of a crack, the crack propagates by frequent interactions and coalescence with other cracks. The growth rate of an especially small crack in NaCl solution is larger than that in air. However, the growth rate of a comparatively large crack is smaller in NaCl solution than in air.  相似文献   

13.
We investigate the kinetics of small fatigue cracks starting from notches in samples of V95pchT2 aluminum alloy in air and in a 3.5% NaCl solution. The influence of salt water is manifested in the initiation of pits on the notch surface and subsequent accelerated growth of small cracks (2–3 times faster than in the laboratory air). The size of an initial macrocracka i does not depend on the level of stress or strain, notch radius, or environment and is equal to the characteristic distanced *=100 μm of the prefailure zone which is a material constant. The effect of crack closure in the presence of a corrosive medium is observed at the crack lengtha>100 μm. Within the frameworks of the approach proposed earlier for the study of initiation of a macrocrack near a notch, the basic dependences of values of local stresses or strains on the duration of the period of initiation of a macrocrack with lengtha i =d * are established, and the standard diagrams of cyclic crack resistance are constructed for V95pchT2 aluminum alloy at the stage of macrocrack growth in air and in a 3.5% NaCl solution. Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 35, No. 1, pp. 7–15, January–February, 1999.  相似文献   

14.
Abstract— Reasons for data scatter from fatigue tests on a high strength 13% Cr steel are discussed and data is presented for corrosion fatigue of this steel in a condensing steam environment. Rotating bend tests were performed at 50 and 3 Hz and tension-tension fatigue tests at 0.016 Hz and R =0.1. Some specimens were periodically inspected to identify sites of fatigue crack initiation. The role of inclusions in initiating fatigue cracks was investigated and it was found that the population of larger inclusions in the steel matched that at fatigue crack initiation sites. Comparison of fatigue lives from polished and abraded specimens indicated that there is little point in producing highly polished surfaces for this steel to try and improve fatigue life unless the inclusion content can be reduced in size and number. Corrosion fatigue data is presented indicating the magnitude of the reduction of fatigue life caused by condensing pure steam and condensing chlorinated steam.  相似文献   

15.
The mechanism of corrosion fatigue crack initiation in stainless steels was examined in both air and chloride solutions. For a tempered martensitic, a duplex and a soft martensitic steel it is shown that the decrease of the fatigue strength from the value measured in air to that measured in corrosive environments depends primarily upon the stability of the protective film. If the passivity is stable, cracks are found to originate almost exclusively at oxide inclusions. Cracking or debonding were found to occur. For the duplex steel in the vicinity of the inclusion there were pronounced emerging persistent slip bands. They cause localized corrosion attack, thus allowing cracks to be formed more easily. If pitting is superposed, crack nucleation always occurs at the base of the pit. Pit formation and growth rate are accelerated by cyclic loading.  相似文献   

16.
采用超声疲劳试验机研究SUJ2轴承钢的超长寿命疲劳。结果表明:对于复合氧化物和TiCN裂纹源,裂纹从夹杂物与基体界面处萌生;铁、铬合金碳化物裂纹源则为夹杂物本身开裂。颗粒状亮面(GBF)相对尺寸正比于裂纹源处夹杂物边缘的应力强度因子范围1/ΔK2inc,对于本实验的SUJ2材料,当ΔKinc8MPa·m1/2时GBF不再形成。通过数据拟合得到了GBF内裂纹扩展规律:area~(1/2)_(GBF)/area~(1/2)_(inc)=(m_1+m_2N_f)~(m_0),证实了Paris公式可以用来描述GBF内的裂纹扩展。  相似文献   

17.
Experiments have been made on two commercial aluminium alloys (BS L65, Al-Cu-Mg-Si-Mn; DTD 5050, Al-Zn-Mg-Cu-Cr) to observe the initiation of fatigue cracks at a plane polished surface and the subsequent growth of very short cracks [0.006 mm (0.00025 in.)-0.5 mm (0.02 in.) deep]. It was found that cracks initiated at surface inclusions, either from the interface between an inclusion and the matrix or from a crack in an inclusion. In both cases the crack ran into the material in directions approximately perpendicular to the applied tensile stress. The growth rates of the short surface were compared, using linear elastic fracture mechanics, with the rates far long [>0.25 mm (0.01 in.)] through-section cracks. The growth rate for the short cracks tended towards that predicted from long cracks for creek depths greater than about 0.127 mm (0.005 in.) but the average crack rate in the early stages of growth was about 1.27 × 10?6 mm/cycle (5 ×10?8in./cycle) which is much faster than would be predicted from the long crack data. For cracks about 0.025 mm (0.001 in.) deep the rate varied approximately as the square root of the crack depth. The effect of stress on the proportion of the total life occupied by initiation and by propagation of the crack is discussed.  相似文献   

18.
Quasi-static tensile tests in air and slow strain rate tests (SSRTs) in a 3.5% NaCl solution were conducted in an ultra-high-strength P/M Al–Zn–Mg alloy fabricated through powder metallurgy. Attention is also paid to fatigue strength and fatigue crack growth behavior in laboratory air and in a 3.5% NaCl solution. The alloy has extremely high strength of about 800 MPa. However, elongation at break remains small, at about 1.3%. The final fracture occurs by a macroscopically flat crack normal to the tensile axis, with little reduction in area and little shear lip on the periphery of a smooth sample. However, it fails microscopically in a ductile manner, with dimples. Dimple size is less than 1 μm, because the grain size of the alloy is extremely small. Strengthening mechanisms operating in the alloy are: small grains, sufficient metastable η′ phase in a matrix, and intermetallic compound acting as a fiber reinforcement. The SSRT strength in a 3.5% NaCl solution decreases slightly at a very low strain rate, that is smaller than those observed in aluminum alloys sensitive to stress corrosion. This means that the crack initiation resistance to stress corrosion is superior. However, under cyclic loading, the corrosion fatigue strength becomes lower than that conducted in air, because pitting corrosion on a sample surface acts as a stress concentrator. Crack initiation site of quasi-static and fatigue failure of the alloy is at inclusions, and hence, it is essential to decrease inclusions in the alloy for the improvement of the mechanical properties. Fatigue crack resistance of the alloy is inferior to conventional Al–Zn–Mg alloys fabricated by ingot metallurgy, because the fatigue fracture toughness, or ductility, of the alloy is inferior to other Al alloys, and intergranular cracking promotes crack growth. However, no influence of 3.5% NaCl solution on corrosion fatigue crack growth is observed, although an investigation is required into whether stress corrosion crack growth occurs or not, and at the same time, and of corrosion fatigue crack growth behavior at lower stress intensity. The fracture surface and crack initiation sites are closely examined using a high-resolution field emission type scanning electron microscope, and the fracture mechanisms of the alloy are discussed.  相似文献   

19.
Abstract— In order to investigate the fatigue strength and fracture mechanism of ceramic-sprayed steel, rotary bending fatigue tests were conducted at room temperature in air and 3% NaCl solution using specimens of a medium carbon steel (S45C) with sprayed coating layers of Ni-5% A1 (under-coating) and chromia (top-coating). The results obtained are discussed based on observations of fatigue cracks and experimental data on specimens subjected to individual treatments during the ceramic spraying process. It was found that at a very early stage of fatigue life, cracks were initiated at the interface between under- and top-coating layers, and grew rapidly into the ceramic-sprayed layer. However, these cracks did not propagate continuously into the substrate, and the final failure was led by the growth of a crack newly initiated at the surface of the substrate steel. Thus, the fatigue strength of the ceramic-sprayed steel in air could be evaluated due to the property of the substrate. The corrosion fatigue strength of ceramic- sprayed steel was improved when compared to that of the substrate steel. However, the coating layer contained many pores, through which NaCl solution was supplied from the specimen surface to the substrate. Corrosion pits were formed at the interface between the under-coating and the substrate. Subsequently, cracks initiated from the pits and grew into the substrate. Tests were also conducted on specimens whose pores were closed by a shielding treatment. In this case, NaCl solution was supplied to the substrate by cracks initiated in the top-coating layer. The shielding treatment was effective at low stress levels where fatigue life was more than 107 cycles, while it had little effect on improving corrosion fatigue strength at higher stress levels because of the many cracks initiated in the top-coating layer.  相似文献   

20.
Abstract

Rotating bending fatigue tests were performed on hardened AISI type 52100 bearing steel. Fracture surfaces after testing at a stress amplitude of 950 MPa showed that the Ti(C,N) inclusions which caused fatigue failure were significantly smaller than the corresponding alumina inclusions. The smallest crack initiating Ti(C,N) inclusion had a size of 3 μm and the smallest alumina inclusion was 17 μm. It was also shown that fatigue life was significantly shorter for a steel which showed cracked alumina inclusions on the fracture surfaces than for a steel which had non-cracked inclusions. Finite element calculations were performed to determine the driving forces of short cracks at Ti(C,N) and alumina inclusions. Two configurations were studied in each case, based on both non-cracked and cracked inclusions. The calculations incorporated heat treatment simulation and cyclic loading with successive growth of cracks. It was found that the Ti(C,N) configurations gave the highest driving forces for crack growth. The alumina configuration with a non-cracked inclusion gave the lowest driving force. It was concluded based both on experimental evidence and theoretical considerations that Ti(C,N) inclusions are more detrimental to fatigue life than alumina inclusions of the same size. It is their shape and thermal properties which make Ti(C,N) inclusions more detrimental than alumina inclusions. Internal cracking of alumina inclusions leads to reduced fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号