首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
HNO plays significant roles in many biological processes. Numerous heme proteins bind HNO, an important step for its biological functions. A systematic computational study was performed to provide the first detailed trends and origins of the effects of iron oxidation state, axial ligand, and protein environment on HNO binding. The results show that HNO binds much weaker with ferric porphyrins than corresponding ferrous systems, offering strong thermodynamic driving force for experimentally observed reductive nitrosylation. The axial ligand was found to influence HNO binding through its trans effect and charge donation effect. The protein environment significantly affects the HNO hydrogen bonding structures and properties. The predicted NMR and vibrational data are in excellent agreement with experiment. This broad range of results shall facilitate studies of HNO binding in many heme proteins, models, and related metalloproteins.  相似文献   

5.
《化学:亚洲杂志》2017,12(10):1027-1042
The importance of carbohydrates is evident by their essential role in all living systems. Their syntheses have attracted attention from chemists for over a century. Most chemical syntheses in this area focus on the preparation of carbohydrates from naturally occurring monosaccharides. De novo chemical synthesis of carbohydrates from feedstock starting materials has emerged as a complementary method for the preparation of diverse mono‐ and oligosaccharides. In this review, the history of de novo carbohydrate synthesis is briefly discussed and particular attention is given to methods that address the formation of glycosidic bonds for potential de novo synthesis of oligosaccharides. Almost all methods of this kind involve the formation of dihydropyran intermediates. Recent progress in forming dihydropyrans by Achmatowicz rearrangement, hetero‐Diels–Alder cycloaddition, ring‐closing metathesis, and other methods is also elaborated.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Recent advances in computational design have enabled the development of primitive enzymes for a range of mechanistically distinct reactions. Here we show that the rudimentary active sites of these catalysts can give rise to useful chemical promiscuity. Specifically, RA95.5‐8, designed and evolved as a retro‐aldolase, also promotes asymmetric Michael additions of carbanions to unsaturated ketones with high rates and selectivities. The reactions proceed by amine catalysis, as indicated by mutagenesis and X‐ray data. The inherent flexibility and tunability of this catalyst should make it a versatile platform for further optimization and/or mechanistic diversification by directed evolution.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号