首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 117 毫秒
1.
张琪  张奎  钟璟  徐荣 《化工进展》2020,39(7):2751-2757
通过胺基膦酸化法改性氧化石墨烯(GO)合成接枝有膦酸基团和磺酸基团的膦酸改性氧化石墨烯(MGO),热重分析表明MGO具有良好的热稳定性。通过原位聚合法将MGO掺杂到磺化聚苯并咪唑(SPBI)中,成功制备了SPBI/MGO质子交换复合膜。SEM表明膜表面致密,MGO的加入使断面出现片状结构。SPBI/MGO-1%复合膜的酸掺杂率最高达到248.8%,MGO的掺杂提高了复合膜的热稳定性。复合膜的干膜拉伸强度相对于Nafion117膜(26.65MPa)提高了36%,SPBI/MGO-1%的湿膜的拉伸强度达到69.46MPa,相较于SPBI膜提高了41.2%,复合膜具有较高的力学性能。SPBI/MGO复合膜的质子电导率随着MGO含量增加而逐渐增加,SPBI/MGO-1%复合膜在10%RH和160℃条件下质子电导率达到0.193S/cm,在高温低湿的质子交换膜燃料电池中有较高的应用前景。  相似文献   

2.
为提高膜的尺寸稳定性和阻醇性能,以磺化聚苯并咪唑(S-PBI)与高磺化度聚醚砜(ABPS)两种聚合物为原料,采用溶液共混的方法,制备了系列酸碱复合质子交换膜。研究了复合膜的甲醇溶胀性、吸水率、甲醇渗透系数、质子传导率随S-PBI含量的变化规律。研究表明,随着S-PBI含量的增加,膜的阻醇性能和尺寸稳定性明显提高;同时,复合膜具有较好的质子传导率,有望应用于直接甲醇燃料电池。  相似文献   

3.
4.
5.
为改善磺化聚苯并咪唑的综合性能,用异氰酸丙基三乙氧基硅烷作为偶联剂,正硅酸乙酯作为前驱体,在膜内生成有机-无机杂化交联网络,制备了燃料电池用高温质子交换膜。利用傅里叶转变红外光谱(FTIR)表征了聚合物膜的化学结构。用扫描电镜(SEM)观察了聚合物膜的断面形貌。利用交流阻抗(EIS)测定了聚合物膜在磷酸掺杂后的质子传导率。研究结果表明,硅烷偶联剂的加入使得界面相容性良好。由于存在有机-无机交联结构,在膜的溶胀增加不大的前提下,磷酸掺杂量得到了增加,相应地增加了聚合物膜的质子传导率。  相似文献   

6.
制备了一系列含有季铵盐化氧化石墨烯(QGO)的磺化聚磷腈类复合质子交换膜。通过对复合膜的稳定性能和电化学性能测试发现,复合膜(SP-x-QGO)的吸水率和溶胀度都低于纯磺化聚磷腈膜(SPFPP)。复合膜具有较好的抗氧化性能;复合膜SP-3-QGO在80℃完全吸水条件下的质子传导率为0.092 S/cm。结果表明,季铵盐化的氧化石墨烯(QGO)复合磺化聚磷腈类质子交换膜(SP-x-QGO)在燃料电池领域具有很大的发展前景。  相似文献   

7.
以环氧氯丙烷和1–甲基咪唑为原料制备新型离子液体(IL),以IL为原料对氧化石墨烯(GO)进行表面修饰制备离子液体功能化氧化石墨烯(IL–GO),以IL–GO为添加剂制备基于含氟聚苯并咪唑(FPBI)复合膜。研究了IL–GO的含量对复合膜的热稳定性、力学强度、离子电导率、离子交换容量(IEC)、吸水率、溶胀度和耐碱性等性能的影响。研究结果表明,复合膜的IEC、离子电导率和拉伸性能都随着IL–GO含量的增加而增大,当IL–GO含量为30%时其拉伸应力和拉伸弹性模量分别达到77.5 MPa和1.95 GPa,在80℃下,其最大离子电导率可达72.3 m S/cm,然而复合膜的热稳定性并没随着IL–GO含量的增加而改变。FPBI/IL–GO复合膜具有良好的稳定性,该系列阴离子交换膜有望在碱性阴离子交换膜燃料电池中得到应用。  相似文献   

8.
通过缩聚法制备了含氟聚苯并咪唑(FPBI),以1–甲基咪唑和聚环氧氯丙烷为原料,制备了咪唑盐修饰的聚环氧氯丙烷(Im PECH),并通过溶液浇铸法制备了FPBI/Im PECH复合膜。系统地研究了复合膜中Im PECH含量的不同对复合膜的力学性能、热稳定性、离子电导率、离子交换容量(IEC)、吸水率、溶胀度等性能的影响。研究结果表明,随着Im PECH含量的增加,复合膜的吸水率、溶胀度、IEC、离子电导率逐渐增加,依然能够保持良好的力学性能和热稳定性。FPBI/Im PECH复合膜在80℃下最高电导率达到55.74 m S/cm,并展示了优异的耐碱性,该复合阴离子交换膜有望在碱性阴离子交换膜燃料电池中得到应用。  相似文献   

9.
李金晟  葛君杰  刘长鹏  邢巍 《化工进展》2021,40(9):4894-4903
高温质子交换膜燃料电池具有反应动力学快、CO耐受性高等特点,但磷酸掺杂的高温质子交换膜因磷酸的流失和聚合物的降解等原因导致燃料电池的输出功率发生衰减。本文通过介绍聚苯并咪唑衍生物的高温质子交换膜、聚苯并咪唑的复合型质子交换膜、新型芳基聚合物的高温质子交换膜,阐明聚合物的主链结构、官能团结构以及复合填料对高温质子交换膜性能的影响。在近期的研究报道中,提高膜性能的主要策略包括提升自由体积、建立交联结构、嵌段共聚、复合掺杂(ILs、MOFs、PIMs、MOx)、阳离子官能团修饰等。文章指出,在未来的研究中应该加强对磷酸基高温质子交换膜质子传输通道结构的进一步理解,关注聚合物化学降解和物理性能衰败的原因,并开发更多的新型聚合物材料。  相似文献   

10.
李慧  杨正金  徐铜文 《化工学报》2021,72(1):132-142
高温质子交换膜燃料电池(HT-PEMFCs)因其具有催化剂CO耐受性良好,能量转化率高,水热管理简单等优点,成为了能源领域重要的研究方向之一。高温质子交换膜(HTPEM)是它的主要部件之一,分别以水、磷酸分子和咪唑分子为质子传导载体分析了目前HTPEM的研究现状,比较后得出了以磷酸为质子载体的HTPEM性能最佳的结论,指出了研究中尚存的问题,并展望了未来HTPEM可能的研究方向。  相似文献   

11.
The sulfonated polybenzimidazole (sPBI)/sulfonated imidized graphene oxide (SIGO) was evaluated to be a potential candidate for high temperature proton exchange membranes fuel cells (HT-PEMFCs). Multifunctionalized covalently bonded SIGO is incorporated in sPBI matrix to resolve the drawbacks such as low proton conductivity, poor water uptake, and ion-exchange capacity (IEC) of sPBI polymer, synthesized by direct polycondensation in phosphoric acid for the application of proton exchange membranes. Strong hydrogen bonding among multifunctional groups established a neighborhood of interconnected hydrophobic graphene sheets and organic polymer chains. It provides hydrophobic–hydrophilic phase separation and facile proton hopping architecture. The optimized sPBI/SIGO (15 wt %) revealed 2.45 meq g−1 IEC; 5.81 mS cm−1 proton conductivity [120 °C and 10% relative humidity (RH)] and 2.45% bound water content. The maximum power density of the sPBI/SIGO-15 membrane was 0.40 W cm−2 at 160 °C (5% RH) and ambient pressure with stoichiometric feed of H2/air. This recommends that sPBI/SIGO composite membranes are compatible candidate for HT-PEMFCs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47892.  相似文献   

12.
A novel functional graphene with high ion exchange capacity (IEC) was prepared by grafting reaction induced by 60Co γ‐ray irradiation using graphene oxide. Then, polybenzimidazole/radiation grafting graphene oxide (PBI/RGO) composite membranes were prepared by the solution‐casting method and doped with phosphoric acid (PA) to improve their proton conductivity. The properties of PBI/GO/PA and PBI/RGO/PA membranes including the PA doping level, chemical stability, proton conductivity and mechanical properties were evaluated and compared. The tensile strength of PBI/RGO/PA membranes (ranging from 27.3 to 38.5 MPa) increases at first and then decreases with the increase of the RGO content, and is significantly higher than that of other PA doped PBI‐based membranes. The proton conductivity of PBI/RGO‐3/PA membrane is 28.0 mS cm?1 at 170 °C without humidity, with an increase of 72.0% compared with that of PBI/PA membrane. These results suggest that PBI/RGO/PA membranes have the potential to be used as high‐temperature proton exchange membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44986.  相似文献   

13.
一种新型磺化聚酰亚胺质子交换膜的合成与表征   总被引:2,自引:0,他引:2       下载免费PDF全文
尚玉明  谢晓峰  刘洋  徐景明  毛宗强 《化工学报》2005,56(12):2440-2443
质子交换膜是质子交换膜燃料电池膜电极的核心部件之一,它的性能好坏对整个系统的运行起着至关重要的作用.目前在质子交换膜燃料电池中普遍采用的质子交换膜材料是全氟磺酸系列薄膜,这类材料具有较高的质子传导率、化学及机械稳定性,但用于直接甲醇燃料电池(DMFC)时则存在甲醇渗透、导致燃料电池输出性能大大降低的问题  相似文献   

14.
吴魁  解东来 《化工进展》2012,31(10):2202-2206,2220
高温质子交换膜燃料电池解决了传统质子交换膜燃料电池催化剂易受CO等杂质气体毒化、水热管理复杂等问题,成为当今燃料电池发展的主要方向。高温质子交换膜是实现高温操作的关键部分。本文结合质子传递机理,分析了以水作为质子溶剂、非水质子溶剂质子交换膜以及无机固态质子导体膜的研究现状,认为有机/无机复合膜和非水质子溶剂膜,尤其是其中的磷酸掺杂的PBI膜是高温质子交换膜的发展方向。  相似文献   

15.
付凤艳  张杰  程敬泉  张素芳  张彦  樊静 《化工进展》2019,38(5):2234-2242
保护环境,开发环保型能源,对人类和社会具有重要意义。质子交换膜燃料电池由于其能量转化率高,可实现零排放,近年来引起了电池领域研究者们的兴趣。氧化石墨烯(GO)由于存在活性氧官能团,可以和离子型聚合物进行复合以制备复合质子交换膜。氧化石墨烯类的复合质子交换膜应用于燃料电池时可以提高膜在高温低湿度条件下的质子传导率,降低甲醇渗透率,提高电池的功率密度。本文首先介绍了氧化石墨烯的制备方法,然后从不同的离子型聚合物基质复合质子交换膜的类别出发,详细介绍了氧化石墨烯在Nafion、聚醚醚酮、聚苯并咪唑和壳聚糖等不同种类的离子型聚合物中的应用现状及作用机理,同时对其在质子交换膜的应用方面存在的问题及应用前景做了评论和展望。  相似文献   

16.
The preparation of sulfonated polybenzimidazole (sPBI) by the grafting of (4‐bromomethyl) benzenesulfonate onto polybenzimidazole (PBI) has been investigated. The methanol permeability and proton conductivity of PBI and sPBI have been studied, and the effects of methanol concentration and temperature on the methanol permeability of PBI and sPBI membranes are discussed. The results showed that the PBI membrane is a good methanol barrier. Methanol permeability in this membrane decreases with increasing methanol concentration and increases with increasing temperature. The temperature‐dependence of methanol permeability of PBI and sPBI membranes is of the ‘Arrhenius type’. Methanol permeation of sPBI is less sensitive to temperature than that of PBI. However, sPBI is a poorer methanol barrier when compared to PBI. Methanol permeability in sPBI membranes increases with increasing methanol concentration and temperature. The proton conductivity of sPBI is 4.69 × 10?4 S cm?1 at room temperature in the hydrated state. The DC conductivity of sPBI–H3PO4 increases with increasing temperature. Proton transport in sPBI–H3PO4 is less sensitive to temperature than that in PBI–H3PO4. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
通过改变共聚单体种类,探究主链元素种类对聚合物质子交换膜性能的影响。以3,3'-二磺酸基钠盐-4,4'-二氟二苯砜为磺化单体,4,4'-二氟二苯砜为非磺化单体,4,4'-二羟基二苯醚或4,4'-二巯基二苯硫醚为共聚单体,通过亲核缩聚反应成功可控制备出磺化度分别为30%和50%的磺化聚芳醚砜(SPES)与磺化聚芳硫醚砜(SPTES)。采用流延法制备了两种聚合物的透明坚韧的质子交换膜。研究发现两种聚合物膜均显示出了良好的力学性能以及较为适中的吸水率与溶胀度。两种聚合物质子交换膜的起始分解温度达到250℃,具有良好的热稳定性。随磺化度的升高,两种聚合物膜的吸水率、溶胀率以及质子传导率均升高。由于主链硫较氧原子与苯环的共轭作用更强以及供电子硫原子与吸电子基团的相互作用,SPTES膜较SPES膜表现出更高的玻璃化转变温度(T g)、更低的溶胀率以及更高质子传导率。其中SPES-50与SPTES-50在80℃、100%RH条件下,质子传导率分别为0.136S/cm与0.142S/cm,表明其作为质子交换膜具有潜在的应用前景。  相似文献   

18.
Kui Jiao  Xianguo Li 《Fuel》2011,90(2):568-582
The performance of proton exchange membrane fuel cell (PEMFC) degrades when carbon monoxide (CO) is present in the supplied fuel, which is referred to as CO poisoning. Even though the high temperature PEMFC (HT-PEMFC) with a typical operating temperature range from 100 °C to 200 °C features higher CO tolerance than the conventional PEMFC operating at lower than 100 °C, the performance degradation of HT-PEMFC is still significant with high CO concentrations (e.g. ?0.5% CO by volume at 130 °C) in the supplied fuel. In this study, a CO poisoning model is developed for HT-PEMFCs with phosphoric acid doped polybenzimidazole (PBI) membranes. The present three-dimensional non-isothermal model compares well with published experimental data at various operating temperatures and CO concentrations in the supplied fuel. It is found that the CO adsorption/desorption processes follow Langmuir kinetics in HT-PEMFCs instead of the well-known Temkin kinetics in conventional PEMFCs. The results indicate that a HT-PEMFC can operate with sufficiently good performance at 130 °C or higher with hydrogen gas produced by methanol reforming with selective oxidation process, and at 160 °C or higher even without the selective oxidation process. At high current densities, it is also observed that severe performance degradation due to CO poisoning only occurs if the volume averaged hydrogen coverage is lower than 0.1 in the anode catalyst layer (CL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号