首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
[1]H.W. Tam, W.X. Ma and X.B. Hu, J. Phys. Soc. Jpn. 69(2000) 45. [2]R. Hirota and J. Satsuma, Phys. Lett. A85 (1981) 407. [3]H.W. Tam, X.B. Hu and D.L. Wang, J. Phys. Soc. Jpn.68 (1999) 369. [4]J. Satsuma and R. Hirota, J. Phys. Soc. Jpn. 51 (1982)332. [5]E.G. Fan and H.Q. Zhang, Phys. Lett. A246 (1998) 403. [6]E.G. Fan, Phys. Lett. A277 (2000) 212. [7]W. Malfiet, Am. J. Phys. 60 (1992) 650. [8]E.J. Parkes and B.R. Duffy, Comput. Phys. Commun. 98(1996) 288. [9]N.F. Smyth, J. Aust. Math. Soc. Series B33 (1992) 403. [10]P.A. Clarkson and E.L. Manfield, Physica D70 (1993)250. [11]N.A. Kudryashov and D. Zargayan, J. Phys. A29 (1996)8067.  相似文献   

2.
[1]N. Yajima and M. Oikawa, Prog. Theor. Phys. 56 (1976)1719. [2]Y.C. Ma, Studies Appl. Math. 59 (1978) 201. [3]Y.C. Ma and L.G. Rederopp, Phys. Fluids 22 (1979) 1572. [4]M. Funakoshi and M. Oikowa, J. Phys. Soc. Jpn. 52(1983) 1982. [5]M. Oikawa, M. Okamura, and M. Funakoshi, J. Phys. Soc.Jpn. 58 (1989) 4416. [6]Derek W.C. Lai and K.W. Chow, J. Phys. Soc. Jpn. 68(1999) 1847. [7]D.H. Wahlquist and F.B. Estabrook, J. Math. Phys. 16(1975) 1. [8]H.C. Morris, J. Math. Phys. 17 (1976) 1870; H.C. Morris,J. Phys. A: Math. Gen. 12 (1979) 261. [9]J.F. Lu, et al., Phys. Lett. A135 (1989) 179; A213 (1996)32; X.Q. Zhao and J.F. Lu, J. Phys. Soc. Jpn. 68 (1999);IL Nuo. Cim. 112 (1999) 1501.  相似文献   

3.
[1]BES Collaboration,Nucl.Phys.B75 (1999) 181;Z.P.Zheng,Int.J.Mod.Phys.A15 (2000) 4723. [2]J.Z.Bai,et al.,Phys.Rev.Lett.81 (1998) 3091. [3]V.A.Novirov,et al.,Phys.Rep.C41 (1978) 1. [4]R.Barbieri,R.Gatto and E.Remiddi,Phys.Lett.B95(1980) 93;Nucl.Phys.B192 (1981) 61. [5]G.T.Bodwin,E.Braaten and G.P.Lepage,Phys.Rev.D46 (1992) R1914. [6]G.T.Bodwin,E.Braaten and G.P.Lepage,Phys.Rev.D51 (1995) 1125. [7]A.Duncan and A.H.Mueller,Phys.Lett.B93 (1980) 119;A.H.Mueller,Phys.Rep.C73 (1981) 237. [8]G.P.Lepage and S.J.Brodsky,Phys.Rev.D22 (1980)2157. [9]J.Bolz,P.Kroll and G.A.Schuler,Phys.Lett.B392(1997) 198;Eur.Phys.J.C2 (1998) 705. [10]X.N.WANG,X.D.XIANG and T.HUANG,Commun.Theor.Phys.(Beijing,China) 5 (1986) 123. [11]V.L.Chernyak and A.R.Zhitnisky,Nucl.Phys.B201(1982) 492. [12]T.HUANG,B.Q.MA and Q.X.SHEN,Phys.Rev.D49(1994) 1490. [13]A.V.Radyushkin and R.T.Ruskov,Phys.Lett.B374(1996) 848. [14]R.Jakob,P.Kroll and M.Raulfs,J.Phys.G22 (1996)45;P.Kroll and M.Raulfs,Phys.Lett.B387 (1996) 848. [15]I.V.Musatov and A.V.Radyushkin,Phys.Rev.D56(1997) 2713. [16]S.J.Brodsky,T.Huang and G.P.Lepage,Particles and Fields 2,eds Z.Capri and A.N.Kamal,(1982) p.143.  相似文献   

4.
[1]M.A. Kastner, Phys. Today 46 (1993) 24. [2]A.D. Yoffe, Adv. Phys. 50 (2001) 1. [3]G. Medeiros, F.G. Piku s, P.M. Petroff, and A.L. Efros,Phys. Rev. B55 (1997) 1568. [4]H.F. Hess, E. Betzig, T.D. Harris, L.N. Pfeiffer, and K.W.West, Science 264 (1994) 1740. [5]K. Brunner, G. Abstreiter, G. Bohm, G. Trankle, and G.Weimann, Phys. Rev. Lett. 73 (1994) 1138. [6]D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer,and D. Park, Science 273 (1996) 87; Phys. Rev. Lett. 76(1996) 3005. [7]L.E. Brus, J. Chem. Phys. 80 (1984) 4403. [8]S.V. Nair, S. Sinha, and K.C. Rustagi, Phys. Rev. B35(1987) 4098. [9]G.W. Bryant, Phys. Rev. B37 (1988) 8763. [10]Y. Kayanuma, Phys. Rev. B38 (1988) 9797. [11]J.B. Xia, Phys. Rev. B40 (1989) 8500. [12]Y. Kayanuma and H. Momiji, Phys. Rev. B41 (1990)10261. [13]D.B. Tran Thoai, Y.Z. Hu, and S.W. Koch, Phys. Rev.B42 (1990) 11261. [14]A.L. Ekimov, F. Hache, M.C. Schanne-Klein, et al., J.Opt. Soc. Am. B10 (1993) 100. [15]L.M. Ramaniah and S.V. Nair, Phys. Rev. B47 (1993)7132. [16]Y.Z. Hu, S.W. Koch, M. Lindberg, et al., Phys. Rev. Lett.64 (1990) 1805. [17]Y.Z. Hu, M. Lindberg, and S.W. Koch, Phys. Rev. B42(1990) 1713. [18]R. Del Sole and A. D‘Andrea, in Optical Switching in Low-Dimensional Systems, eds. H. Haug and L. Banyai,Plenum, New York (1989) p. 289. [19]G.W. Bryant, Phys. Rev. Lett. 59 (1987) 1140; Phys.Rev. B41 (1990) 1243. [20]Y. Kayanuma, Phys. Rev. B44 (1991) 13085. [21]Yang Jie and Zhang Zhan-Jun, Commun. Theor. Phys.(Beijing, China) 39 (2003) 369. [22]Xie Wen-Fang and Gu Juan, Commun. Theor. Phys. (Beijing, China) 40 (2003) 619. [23]T. Takagahara, Phys. Rev. B47 (1993) 4569. [24]J.L. Marfn, R. Riera, and S.A. Cruz, J. Phys.: Condens.Matter 10 (1998) 1349. [25]Y. Masumoto and T. Takagahara, Semiconductor Quantum Dots, Springer-Verlag, Heidelberg, New York (2002). [26]J.T. Lin and T.F. Jiang, Phys. Rev. B64 (2001) 195323. [27]K. Edamatsu, Y. Mimura, K. Yamanaka, and T. Itoh,Proc. of the Japanese Physical Society, Part 2, Osaka,Sept. 1995, p.252. [28]T. Itop and K. Edamatsu, Proc. of the Japanese Physical Society, Part 2, Kanazawa, March (1996) p. 280.  相似文献   

5.
[1]V. Russell, F.A. Kanda, and A.J. King, Acta. Cryst. 6(1953) 870. [2]A.S. Cooper, E. Corenzwit, L.D. Longinotti, B.T.Matthias, and W.H. Zachariasen, Proc. Natl. Acad. Sci.67 (1970) 313. [3]L. Leyarovska and F. Leyarovski, J. Less Common Met.67 (1979) 249. [4]J. Nagamatsu, N. Nakagawa, T. Murant, Y. Zenitani,and J. Akimitsu, Nature (London) 410 (2001) 63. [5]S.L. Budko, G. Lapertot, C. Petrovic, C.E. Cunningham,N. Anderson, and P.C. Canfield, Phys. Rev. Lett. 86(2001) 1877. [6]D.G. Hinks, H. Claus, and J.D. Jorgensen, Nature (London) 411 (2001) 457. [7]A.K.M.A. Islam and F.N. Islam, Physica C 363 (2001)189. [8]A.K.M.A. Islam, F.N. Islam, and S. Kabir, J. Phys. 13(2001) L641. [9]J.D. Jorgensen, D.G. Hinks, and S. Short, Phys. Rev. B 63 (2001) 224522. [10]G. Baskaran, Phys. Rev. B 65 (2002) 212505. [11]K. Presides, Y. Iwasa, T. Ito, D.H. Chi, K. Uehara, E.Nishibori, M. Takata, S. Sakata, Y. Ohishi, O. Shimomura, T. Muranaka, and J. Akimitsu, Phys. Rev. B 64(2001) 12509. [12]M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, Oxford (1954). [13]C.R.A. Catlow and W.C. Mackrodt, Computer Simulation of Solids, Springer-Verlag, Berlin (1982) p. 320. [14]M.P. Tosi, “Cohesion of Ionic Solids in the Born Model“,In Solid State Physics, Advances in Research and Applications, eds. F. Seitz and D. Turnbull, Academic Press,New York (1964). [15]F. Jensen, Introduction to Computational Chemistry,John Wiley and Sons, New York (2002) p. 387. [16]B.G. Dick and A.W. Overhauser, Phys. Rev. 112 (1958)90. [17]J.D. Gale, JCS Faraday Trans. 93 (1997) 629. [18]L. Fast, J.M. Wills, B. Johansson, and O. Eriksson, Phys.Rev. B 51 (1995) 17431. [19]J.F. Nye, Physical Properties of Crystals, Oxford University Press, London (1967). [20]J.R. Macdonald and D.R. Powell, J. Res. Natl. Bur.Stand. A 75 (1971) 441. [21]T. Vogt, G. Schneider, J.A. Hriljac, G. Yang, and J.S.Abell, Phys. Rev. B 63 (2001) R220505. [22]K.P. Bohnen, R. Heid, and B. Renker, Phys. Rev. Lett.86 (2001) 5771. [23]I. Loa and K. Syassen, Solid State Commun. 118 (2001)279. [24]K. Kunc, I. Loa, K. Syassen, R.K. Kremer, and K. Ahn,J. Phys. 44 (2001) 9945. [25]J. Tang, L.C. Qin, A. Matsushita, Y. Takano, K. Togano,H. Kito, and H. Ihara, Phys. Rev. B 64 (2001) 132509. [26]A.F. Goncharov, V.V. Struzhkin, E. Gregoryanz, J. Hu,R.J. Hemley, H.K. Mao, G. Lapertot, S.L. Budko, and P.C. Canfield, Phys. Rev. B 64 (2001) R 100509. [27]T. Ichitsubo, H. Ogi, S. Nishimura, T. Seto, M. Hirao,and H. Inui, Phys. Rev. B 66 (2002) 052514.  相似文献   

6.
[1]J.S. Bell, Physics 1 (1965) 195. [2]D.M. Greenberger, M.A. Horne, A. Shimony, and A.Zeilinger, Am. J. Phys. 58 (1990) 1131. [3]K. Banaszek and K. Wodkiewicz, Phys. Rev. A58 (1998)4345. [4]A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 15(1935) 777. [5]Z. Chen, J. Pan, G. Hou, and Y. Zhang, Phys. Rev. Lett.88 (2002) 040406. [6]H. Jeong, W. Son, M.S. Kim, D. Ahn, and C. Brukner,Phys. Rev. A67 (2003) 012106. [7]Z. Chen and Y. Zhang, Phys. Rev. A65 (2002) 044102. [8]C. Chai, Phys. Rev. A46 (1992) 7187; N.A. Ansari and V.I. Man‘ko, Phys. Rev. A50 (1994) 1942; V.V. Dodonov,V.I. Man‘ko, and D.E. Nikonov, Phys. Rev. A51 (1995)3328. [9]B.C. Sanders, Phys. Rev. A45 (1992) 6811. [10]M.S. Kim and J. Lee, Phys. Rev. A61 (2000) 042102. [11]C.C. Gerry, Phys. Rev. A54 (1996) R2529. [12]H. Jeong and B.C. Sanders, Phys. Rev. A65 (2002)042305. [13]N.D. Mermin, Phys. Rev. Lett. 65 (1990) 1838. [14]S.B. Zheng, Quantum Semiclass. Opt. 10 (1998) 691. [15]E. Solano, G.S. Agarwal, and H. Walther, quantph/0202071.  相似文献   

7.
[1]J.D. Bjorken, Phys. Rev. D 47 (1993) 101. [2]T. Regge, Ⅱ Nuovo 14 (1959) 951. [3]P.D.B. Collins, Introduction to Regge Theory, Cambridge University Press, Cambridge (1977). [4]G.F. Chew and S.C. Frautschi, Phys. Rev. Lett. I (1961)394. [5]A. Donnachie and P.V. Landshoff, Phys. Lett. B 231(1987) 189; Nucl. Phys. B 244 (1984) 322. [6]A. Donnachie and P.V. Landshoff, Nucl. Phys. B 311(1989) 509; J.R. Cudell, Nucl. Phys. B 336 (1990) 509. [7]D.G. Cassel, et al., Phys. Lett. B 136 (1985) 203; B 133(1983) 370. [8]Ma Wei-Xing and Zhou Li-Juan, Commun. Theor. Phys.(Beijing, China) 36 (2002) 577. [9]J.J. Aubert, et al., Phys. Lett. B 161 (1985) 203. [10]J.M. Carget, et al., Nucl. Phys. A 581 (1995) 397. [11]T.D. Meng, et al., Phys. Rev. Lett. 82 (1999) 2044. [12]H. Terazawa, Gluons, Glueballs, Odderons, Pomerons and Color-ball, KEK, preprint 99-47, July, (1999). [13]F.E. Lowm Ogts, Phys. Rev. D 12 (1975) 16; S. Nussikov,Phys. Rev. Lett. 34 (1975) 1286. [14]E.A. Kuraev, L.N. Lipatov, and V.S. Fadin, Phys. Lett.B 60 (1975) 50. [15]P.V. Landshoff and O. Nachtmann, Z. Phys. C 35 (1987)405. [16]J.Z. Bai, et al., Phys. Rev. Lett. 76 (1996) 3502. [17]R.M. Baltkusaitis, et al., Phys. Rev. Lett. 56 (1986) 107. [18]Ma Wei-Xing, et al., Commun. Theor. Phys. (Beijing,China) 43 (2005) 504. [19]L.C. Liu and W.X. Ma, J. Phys. G: Nucl. Part. Phys. 26(2000) L59. [20]A.H. Mueller, Phys. Rep. 73 (1981) 237. [21]V.A. Novikov, M. A. Shifman, A.L. Vainstein, and V.I.Zakharov, Nucl. Phys. B 165 (1980) 67; Nucl. Phys. B 191 (1981) 301; L.S. Kisslinger and J. Gardnei, Phys.Lett. B 410 (1997) 1. [22]H. Kavaum and R. Nakuyama, Nucl. Phys. B 189 (1981)40. [23]L.C. Liu and W.X. Ma, J. Phys. G: Nucl. Part. Phys. 26(2000) L59.  相似文献   

8.
[1]G. Bastard, Phys. Rev. B25 (1982) 7584. [2]G. Bastard, Phys. Rev. B24 (1981) 5693. [3]G. Bastard, in Molecular Beam Epitaxy and Heterostructures, Proceedings of the NATO Advanced Study Institute on Molecular Beam Epitaxy and Heterostructures, eds.L.L. Chang and K. Ploog, Nijhoff, Amsterdam (1983)p. 381. [4]D. F. Nelson, R.C. Miller, and D.A. Kleinman, Phys. Rev.B35 (1987) 7770. [5]K.H. Yoo, L.R. Ram-Mohan, and D.F. Nelson, Phys. Rev.B39 (1989) 12808. [6]S.L. Chuang, Physics of Optoelectronic Devices, John Wiley and Sons, New York (1995). [7]J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, and A.Y. Cho, Science 264 (1994) 533. [8]Rudeger Kohler, Alessandro Tredicucci, Fabio Beltram,Harvey E. Beere, Edmund H. Linfield, A. Giles Davies,David A. Ritchie, Rita C. Iotti, and Fausto Rossi, Nature 417 (2002) 156. [9]H.C. Liu and Federico Capasso, Intersubband Transitions in Quantum Wells: Physics and Devices Applications Ⅱ, Academic Press, San Diego (2000). [10]Yang Quan-Kui and Li Ai-Zhen, Chin. Phys. Lett. 16(1999) 443. [11]A.V. Kuznetsov, G.D. Sanders, and C.J. Stanton, Phys.Rev. B52 (1995) 12045. [12]S.L. Chuang, Phys. Rev. B43 (1991) 9649. [13]Gao Shao-Wen, Cao Jun-Cheng, and Feng Song-Lin,Commun. Theor. Phys. (Beijing, China) 39 (2003) 327. [14]R.W. Kelsall, P. Kinsler, and P. Harrison, Physica E7(2000) 48.  相似文献   

9.
[1]M. Wadati, H. Sanuki, and K. Konno, Prog Theor. Phys.53 (1975) 419. [2]V.A. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, Heidelberg (1991). [3]M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scatting, Cambridge University Press, New York (1991). [4]X.B. Hu and W.X. Ma, Phys. Lett. A293 (2002) 161. [5]S.Y. Lou and J.Z. Lu, Phys. A29 (1996) 4209. [6]X.Y. Tang and S.Y. Lou, Chin. Phys. Lett. 20 (2003) 335. [7]M.L. Wang and H.Q. Zhang, Phys. Lett. A252 (1999)291. [8]Peter A. Clarkson and Martin D. Kruskal, J. Math. Phys.30 (1989) 2201. [9]S.Y. Lou, X.Y. Tang, and J. Lin, J. Math. Phys. 41 (2000)8286. [10]Hui-Bin Li and Ke-Lin Wang, J. Phys A: Math Gen. 23(1990) 4097. [11]W. Maltliet, Am. J. Phys. 31 (1992) 329. [12]W.X. Ma, Int. J. Nonlinear Mech. 31 (1996) 329. [13]E.G. Fan, Phys. Lett. A294 (2002) 26. [14]Y.T. Gao and B. Tian, Comput. Math. Appl. 33 (1997)115. [15]Z.Y. Yan and H.Q. Zhang, Phys. Lett. A285 (2001) 355. [16]Y. Chen, B. Li, and H.Q. Zhang, Commun. Theor. Phys.(Beijing, China) 38 (2002) 261. [17]B. Li, Y. Chen, and H.Q. Zhang, J. Phys. A: Math. Gen.35 (2002) 8253. [18]Y. Chen, B. Li, and H.Q. Zhang, Commun. Theor. Phys.(Beijing, China) 40 (2003) 137. [19]E.G. Fan, J. Phys. A: Math. Gen. 36 (2003) 7009. [20]Z.S. Lu and H.Q. Zhang, Phys. Lett. A307 (2003) 269. [21]Z.S. Lu and H.Z. Zhang, Chaos, Solitons and Fractals 17(2003) 669. [22]S.Y. Lou, Math. Method in Applied Sci. 18 (1995) 789. [23]L.J.F. Broer, Appl. Sci. Res. 31 (1975) 377. [24]D.J. Benney and J.C. Luck, J. Math. Phys. 43 (1964)309. [25]D.J. Kaup, Prog. Theor. Phys. 54 (1975) 396. [26]T.Y. Wu and J.E. Zhang, On Modeling Nonlinear Long Wave, PA: SIAM, Philadelphia (1996) p. 233. [27]M. Boiti, J.J.P. Leon, and F. Pempinelli, Inverse Problems 3 (1987) 1025. [28]G. Paquin and P. Winternitz, Physica D46 (1990) 122. [29]S.Y. Lou, J. Phys. A27 (1994) 3235. [30]S.Y. Lou, Phys. Lett. A176 (1993) 96. [31]M.L. Wang, Y.B. Zhou, and Z.B. Li, Phys. Lett. A216(1996) 67. [32]B. Tian and Y.T. Gao, J. Phys. A29 (1996) 2895.  相似文献   

10.
[1]S.Y. Lou, Chin. Phys. Lett. 16 (1999) 659. [2]S.Y. Lou, Commun. Theor. Phys. (Beijing, China) 35(2001) 589. [3]C.S. Gardner, J. M. Green, et al., Phys. Rev. Lett. 19(1967) 1095. [4]R. Hirota, Phys. Rev. Lett. 27 (1971) 1192. [5]S.Y. Lou, Phys. Lett. A151 (1990) 133. [6]V.B. Matveev and M.A. Salle, Darboux Transformations and Solitons, Springer, Berlin (1991). [7]C.L. Chen and X.Y. Tang, Phys. Rev. E66 (2002) 036605. [8]S.Y. Lou and L.L. Chen, J. Math. Phys. 40 (1999) 6491. [9]S.Y. Lou and J.Z. Lu, J. Math. Gen. 29 (1996) 4209 [10]S.Y. Lou, Phys. Lett. A277 (2000) 94. [11]J.F. Zhang and P. Han, Acta Phys. Sin. 51 (2002) 705 (in Chinese). [12]J.F. Zhang, Commun. Theor. Phys. (Beijing, China) 37(2002) 277. [13]C.L. Zheng and J.F. Zhang, Commun. Theor. Phys. (Beijing, China) 39 (2003) 9. [14]H.Y. Ruan and Y.X. Chen, Acta Phys. Sin. 50 (2001) 586(in Chinese). [15]R.Z. Zhadnov, J. Phys. A: Math. Gen. 27 (1994) L291,and the references therein. [16]J.J.C. Nimmo, Phys. Lett. A168 (1992) 113. [17]J.M. Verosky, J. Math. Phys. 32 (1991) 1733. [18]S.Y. Lou, Phys. Lett. A175 (1993) 23.  相似文献   

11.
12.
The aim of this study was to evaluate the vibration level attenuation of a common wooden floor structure and to present the results together with the statistical precision of the evaluation. Linear regression was used to determine the attenuation rate in the two main directions of the floor structure. The probability for the attenuation rate to be zero was calculated. The attenuation rate was found to be high in the direction perpendicular to the beams with a probability to be zero lower than 0.001. In the direction parallel to the beams the attenuation rate was found to be close to zero.  相似文献   

13.
A film surface, modeled by a grating with rectangular grooves, is shown to give rise to both short and long ranged enhancements due to excitation of planar surface plasmon resonances, and to short ranged, more intense, enhancements due to excitation of waveguide resonances. The latter type of enhancement is shown to become more intense as the ratio of grating period to groove width increases and to be able to account for experimentally observed SERS signals at very low as well as at higher temperatures.  相似文献   

14.
The formation of ohmic contacts to n- and p-type ZnSe is reviewed. The mechanisms for forming reasonable low-resistance ohmic contacts to n-ZnSe are well understood. This results from the fact that the Fermi energy level of ZnSe is unpinned and metals with sufficiently large work functions can make contact to n-type material. However, the situation is reversed for p-ZnSe where a large band gap and large electron affinity make it impossible to find metals with sufficiently large work functions to create an ohmic contact. Instead, the use of HgSe to form low barrier height Schottky contacts and of ZnSe/ZnTe multiple quantum wells (MQWs) to form ohmic contacts is reviewed. Although the MQWs can be used to form ohmic contacts to p-ZnSe, they degrade at high temperatures and high current densities. This is reviewed and shown to be a serious problem for applications to laser diodes.  相似文献   

15.
Nanotechnology will be an increasing part of the everyday lives of most people in the world. There is a general recognition that few people understand the implications of the technology, the technology itself or even the definition of the word. This lack of understanding stems from a lack of knowledge about science in general but more specifically difficulty in grasping the size scale and symbolism of nanotechnology. A potential key to informing the general public is establishing the ability to comprehend the scale of nanotechnology. Transitioning from the macro to the nanoscale seems to require an ability to comprehend scales of one-billion. Scaling is a skill not common in most individuals and tests of their ability to extrapolate size based upon scaling a common object demonstrates that most individuals cannot scale to the extent needed to make the transition to nanoscale. Symbolism is another important vehicle to providing the general public with a basis to understand the concepts of nanotechnology. With increasing age, individuals are able to draw representations of atomic scale objects, but these tend to be iconic and the different representations not easily translated. Ball and stick models are most recognized by the public, which provides an opportunity to present not only useful symbolism but also a reference point for the atomic scale.  相似文献   

16.
浅海内波会引起声传播能量随时间的起伏变化,进而影响水声设备的工作性能.本文利用2015年南海北部一次浅海声场起伏实验数据,对比分析了浅海线性内波和孤立子内波条件下的声传播损失统计特性.在孤立子内波条件下,声传播损失起伏明显加剧,可达11 dB,且分布明显展宽,相对于线性内波的环境,声传播损失起伏可增加5 dB.从简正波...  相似文献   

17.
In the context of vapour cloud explosion, the flame acceleration process can lead to conditions promoting deflagration to detonation transition (DDT), potentially leading to increased damages in accidental scenarios. This study focuses on this phenomenon by performing simulations of detonation reinitiation for fast flames in the Chapman–Jouguet deflagration regime. It is obtained experimentally by the attenuation of an incident detonation by an array of obstacles. A primary objective of the paper is to demonstrate the ability of the numerical model to reproduce the major experimental trends, namely the variation of the reinitiation propensity for different initial pressures and blockage ratios (BRs). Chemical explosive mode analysis (CEMA) is also adapted to the context of this study, in order to identify locally the propagation regime and to provide insights on the reinitiation mechanism. An a priori validation of the CEMA methodology is first performed on relevant canonical one-dimensional configurations. Subsequently, ensembles of five realizations are computed at different initial pressures and BRs and compared to experimental data. They are shown to reproduce the major observed trends in terms of detonation reinitiation length with respect to the operating conditions, with significant variability from one realization to another. In addition, the reinitiation mechanism is also found to be consistent with experimental observations and a previous numerical study of the same configuration. The CEMA methodology adapted to this context is able to identify locally the different propagation regimes, and to track the highly reactive zones that coherently couple with transverse pressure perturbations, leading to the formation of a strongly reacting kernel which eventually triggers the detonation reinitiation.  相似文献   

18.
介绍了虚构的法拉第定律与电子感应加速器不合理,用完整洛伦兹磁力解释电子感应加速器合理有效。  相似文献   

19.
The rangefinder described here is a self-contained instrument for hand-held operation by a diver for searching, tracking, navigation and surveying applications. It has four modes: 1 — to measure range to a passive target directly to ± 1 m; 2 — to measure range to a passive target indirectly to ± 0.1 m; 3 — to measure range to a coded transponder to either ± 1 m or ± 0.1 m; 4 — to indicate the presence of multiple targets downrange where each target occurs in a selected range interval. The pulse echo principle is employed, with pulses typically 250 μs long. The carrier frequency of 300 kHz can be altered easily if required by changing the transducer array.  相似文献   

20.
Jürgen Mimkes 《Physica A》2010,389(8):1665-1676
Economic growth depends on capital and labor and two-dimensional calculus has been applied to economic theory. This leads to Riemann and Stokes integrals and to the first and second laws of production and growth. The mathematical structure is the same as in thermodynamics, economic properties may be related to physical terms: capital to energy, production to physical work, GDP per capita to temperature, production function to entropy. This is called econophysics. Production, trade and banking may be compared to motors, heat pumps or refrigerators. The Carnot process of the first law creates two levels in each system: cold and hot in physics; buyer and seller, investor and saver, rich and poor in economics. The efficiency rises with the income difference of rich and poor. The results of econophysics are compared to neoclassical theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号