首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
焦化汽油的催化裂化改质   总被引:6,自引:1,他引:5  
报道焦化汽油催化裂化改质的工业试验结果,将11%-15%的焦化气油注入提升管预提升段与胜利管输VGO,CGO和VR混炼,经催化改质后,辛烷值可以达到90号汽油指标的要求,并可获得满意的产品分布,同时催化汽油的改质可明显降低催化汽油的烯烃含量,为焦化汽油利用找到了一条经济可行的途径。  相似文献   

2.
一个新的催化转化工艺(MGG)开发成功,它以减压蜡油、二次加工蜡油和渣油等不同馏分的重质油为原料,使用具有特殊反应性能的RMG催化剂,在反应温度490~540C,反应压力0.15~0.35MPa的条件下,通过提升管或床层反应器,最大量地生产富含C_3~=和C_4~=的液化气和汽油,并且汽油具有高的辛烷值和良好的安定性。其液化气产率25~35%,汽油产率40~55%;汽油RON92~95,MON80~84,诱导期500~1000min。该工艺经过中小型试验,已成功地进行了40万t/a规模的工业试验。  相似文献   

3.
催化裂化汽油催化改质降烯烃反应规律的试验研究   总被引:11,自引:1,他引:10  
利用催化裂化催化剂在小型提升管催化裂化装置上对催化裂化汽油催化改质降烯烃过程的反应规律进行了试验研究,详细考察了反应温度、剂油比、反应时间、催化剂活性以及催化剂类型对催化裂化汽油改质降烯烃过程的影响。试验结果表明,随着反应温度、剂油比、反应时间以及催化剂活性的增加,改质汽油烯烃含量降低的幅度增加。催化裂化汽油改质后,烯烃含量大幅下降,异构烷烃和芳烃含量有较大幅度的增加,烯烃含量可以降低到汽油新标准的要求,辛烷值基本维持不变,并且汽油收率高,液体收率维持在98.5%以上,(干气 焦炭)产率损失小。  相似文献   

4.
针对中国石油大庆炼化公司1.0Mt/a催化裂化装置采用的洛阳石化工程公司开发的FDFCC—Ⅰ工艺技术工业化情况进行了分析。由标定结果可以看出:该技术能够灵活适应市场变化,调整产品结构;汽油改质和增产丙烯的效果十分显著,改质后汽油烯烃含量满足了GB17930—2006标准的要求,丙烯收率较常规催化高5.0%以上。但对催化汽油馏分单独进行改质时,催化裂化装置目的产品收率因此降低和能耗增加。  相似文献   

5.
直馏汽油掺碳四非临氢改质技术的工业应用   总被引:3,自引:1,他引:2  
介绍了石油化工科学研究院开发的直馏汽油非临氢改质工艺在沈阳石蜡化工有限公司70kt/a直馏汽油非临氢改质装置上的工业应用情况。结果表明,该技术性能可靠,各项工艺指标均达到或超过设计要求。直馏汽油掺碳四馏分原料改质后,可以增加汽油产率,汽油RON提高38个单位以上,烯烃含量小于3%,成为品质优良的汽油降烯烃调合组分;改质后液化气的烷烃含量达95%以上,烯烃含量小于5%,经脱硫后可作为车用液化气,经济效益显著。  相似文献   

6.
石油化工科学研究院开发的石脑油非临氢改质技术在中国石化塔河分公司70kt/a石脑油异构化装置上的工业应用结果表明,加氢焦化石脑油非临氢改质处理后,可得RON为83.2、烯烃质量分数为1.83%的稳定汽油以及C_3~C_4烷烃质量分数为92.55%左右、烯烃质量分数低于10%的液化气,同时副产少量干气;稳定汽油和液化气的收率分别为71.38%和26.48%,达到了多产稳定汽油、少产液化气的目的。稳定汽油可作为品质优良的汽油调合组分,液化气脱硫后可作为车用液化气。  相似文献   

7.
李玖云 《河南石油》2004,18(1):64-66
灵活多效催化裂化工艺技术汽油提升管反应器的操作条件对改质汽油的产品性质有重要影响。提升管中试验表明:灵活多效催化裂化工艺汽油提升管反应器在400~600℃温度、剂油比大于3.8、油气停留时间在2s左右的操作条件下,改质汽油烯烃含量降低25~45个百分点,辛烷值增加0.5~2.0个单位,脱硫率达15%~40%。  相似文献   

8.
低品质汽油催化改质及其工业实践   总被引:1,自引:0,他引:1  
介绍了低品质汽油催化改质技术及其工业应用结果,在工业催化裂化装置上,对沧州炼油直馏汽油和焦化汽油进行改质,可得到90号高辛烷值汽油及产率为84%以上的液化气,汽油和轻柴油。  相似文献   

9.
中国石化股份有限公司荆门分公司在催化裂解装置上应用了降低汽油烯烃含量的新技术,该技术是将装置内及装置外的汽油馏分循环至提升管底部进行改质。在对DCC装置产品分布和柴油性质、油浆性质影响较小的条件下,通过对不同汽油馏分的再转化可以将DCC装置汽油中烯烃体积分数从72.12%降至47.6Voo~50.6%,经调合后可作为新国标93号商品汽油出厂,同时可增加丙烯产率。工业应用结果表明,不同汽油馏分再转化降低DCC装置汽油中烯烃含量的幅度为:稳定汽油〉粗汽油〉装置外焦化汽油和直馏汽油混合物。  相似文献   

10.
降低催化裂化汽油烯烃技术--FDFCC工艺   总被引:13,自引:1,他引:12  
根据催化裂化过程中烯烃转化机理,提出了一种并联双提升管催化裂化反应体系——FDFCC工艺,其中一根提升管用于重油裂化,另一根用于汽油改质。工业实施结果表明,该工艺可以显著降低催化裂化汽油的烯烃含量,烯烃体积分数降低20~30个百分点,硫含量下降15%~20%,改质汽油诱导期增加,MON和RON略有增加,芳烃中苯含量基本维持不变,芳烃含量虽有所提高,但远远小于规定指标。与常规FCC工艺相比,FDFCC工艺的汽油产率下降4~5个百分点,液化气和柴油产率均增加2个百分点左右,(焦炭 干气)产率增加小于1个百分点。  相似文献   

11.
介绍了清江石油化工有限公司直馏汽油进催化裂化提升管改质情况。结果表明直馏汽油改质后催化裂化汽油辛烷值(RON)仍可达90,液体产品收率提高。催化裂化汽油收率提高了1.29个百分点,柴油收率下降了约1个百分点。同时催化裂化装置运行周期延长。  相似文献   

12.
Abstract

Catalytic upgrading of fluid catalytic cracked (FCC) gasoline obtained from Huabei Petrochemical Company, PetroChina (Renqiu, Hebei, China), was investigated using a microreactor and gas chromatograph integrated unit in order to decrease the content of olefins in gasoline and increase the light olefins (ethylene, propylene, and butylene) content. The experimental results showed that the olefin content in upgraded gasoline can be decreased from 42.6% in raw material to nearly 10%, meeting the requirements of the new gasoline standard, whereas iso-alkane and aromatics contents were markedly increased, from 28.4 and 18.2% to 47 and 36.1%, respectively, so the octane number of gasoline should not be reduced. In addition, higher yields of light olefins were obtained after FCC gasoline was reformulated under laboratory conditions. Higher reaction temperature, longer reaction time, higher weight ratio of catalyst to oil, and higher catalyst activity were beneficial to decrease the olefin content of FCC gasoline and increase the yields of light olefins.  相似文献   

13.
对从石脑油和轻烃生产汽油的技术进行了研究,结果表明,催化重整的类型、加工方案等对汽油辛烷收率均有较大影响,通过选择催化剂和优化反应条件等可以实现汽油辛烷收率的增加;轻石脑油异构化可以显著提高汽油辛烷收率;非临氢改质技术不仅可以将碳四等轻烃转化为优良的汽油调合组分,同时还可生产车用液化气,是提高轻烃资源经济价值的有效手段。  相似文献   

14.
以焦化蜡油(CGO)和焦化汽油(CN)为原料,利用两段提升管催化裂解多产丙烯技术(TMP),在提升管催化裂化中试装置上考察TMP工艺条件下CGO的催化裂解性能,以及CGO催化裂解与CN改质的耦合反应性能.结果表明:TMP工艺对于CGO具有良好的适应性,两段反应综合转化率为87.80%;丙烯收率达到18.12%,选择性为...  相似文献   

15.
提高大庆类原油催化裂化汽油辛烷值工业试验于1996年10月至1997年1月在前郭炼油厂800Kt/a重油催化裂化装置上进行。结果表明,采用DOCR-1催化剂和相应的工艺技术能有效地提高催化裂化汽油的辛烷值。与不用DOCR-1催化剂的结果相比,汽油RON达到90.1,提高1.4个单位;MON达到79.8,提高2.4个单位。轻质油收率降低1.75个百分点,干气和焦炭选择性明显改善,是一种理想的生产高辛烷值汽油和提高重油转化的技术,对汽油的升级换代和无铅化具有重要意义。  相似文献   

16.
福建联合石油化工有限公司在蜡油加氢处理和催化裂化装置上采用LTAG技术,以催化裂化轻循环油(LCO)和蜡油生产高辛烷值汽油。对LCO和蜡油混合加氢后得到的加氢LCO和加氢蜡油分别在催化裂化提升管反应器下部不同位置分层顺序进料方式(LTAG技术)与在催化裂化反应器下部混合进料方式的生产数据进行了系统的分析和总结。结果表明:与混合加氢油进料的常规方式进行对比,LTAG技术的LCO催化裂化表观转化率提高5.17百分点,表观裂化率提高7.87百分点,表观缩合率降低2.01百分点,稳定汽油中烯烃和芳烃的体积分数分别增加1.2百分点和2.0百分点,汽油辛烷值RON和MON分别提高1.4个单位和0.8个单位。LTAG技术是将LCO高效转化为高辛烷值汽油的重要手段。  相似文献   

17.
The isomerization process is gaining importance in the present refining context due to limitations on gasoline benzene, aromatics, and olefin contents. The isomerization process upgrades the octane number of light naphtha fractions and also simultaneously reduces benzene content by saturation of the benzene fraction. Isomerization complements catalytic reforming process in upgrading the octane number of refinery naphtha streams. Isomerization is a simple and cost-effective process for octane enhancement compared with other octane-improving processes. Isomerate product contains very low sulfur and benzene, making it ideal blending component in refinery gasoline pool. Due to the significance of isomerization to the modern refining industry, it becomes essential to review the process with respect to catalysts, catalyst poisons, reactions, thermodynamics, and process developments. The present research thrust in this field along with future scope of work is also discussed briefly. The isomerization process is compared with another well-known refinery process called the catalytic reforming process.  相似文献   

18.
采用结构导向集总(SOL)新方法构建了直馏汽油催化裂化改质的反应动力学模型。模型选取74种分子组成原料矩阵,根据催化裂化正碳离子反应机理,制定了42种反应规则构建反应网络。采用矩阵变换的形式求解反应网络,从而得到产物分子矩阵。通过对产物矩阵中的分子归类,获得产物分布及汽油族组成。采集实验室小型固定流化床催化裂化数据,对模型计算结果进行验证。结果表明,该模型能较为准确地预测产物分布及汽油族组成;在温度及进料组成改变时,模型适应性较好;模型同样能较准确地预测汽油研究法辛烷值。  相似文献   

19.
基于在石油炼制技术开发与应用的积累,并保持20多年持续研发,开发出定向调控汽油组成的催化裂化工艺及系列催化剂,首创降烯烃与脱硫先后集成的技术路线,为我国车用汽油质量持续升级提供了最经济的解决方案。提出负氢离子转移对双分子反应选择性调控及反应深度优化的机制与方法,借助于变径流化床催化反应工程技术和专用催化剂,对影响转化率和氢转移反应类型的因素进行分析,开发出定向调控汽油组成的催化裂化工艺,可灵活调节汽油组成,且烯烃体积分数降至8.5%,异构烷烃分布于汽油前端,从而有利于汽油辛烷值提高和50%馏出温度降低。在催化裂化过程中,尽可能增加汽油异构烷烃和支链烯烃含量,在脱硫过程中,尽可能降低汽油烯烃饱和以减少辛烷值损失。  相似文献   

20.
分析对比了MIP-CGP工艺与辅助提升管工艺对汽油的改质效果。结果表明,辅助提升管控制汽油烯烃含量较为灵活,且降烯烃效果显著;MIP-CGP工艺有利于提高汽油的辛烷值;采用MIP-CGP工艺液化石油气(LPG)及丙烯收率均较高,改质后,LPG中的丙烯质量分数可增加5.21个百分点,丙烯收率达到7.058%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号