首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对苏南地区不同水肥处理稻田土壤中铵态氮和硝态氮剖面分布、稻田氨挥发损失以及水稻地上干物质量及产量进行了研究。结果表明:稻田土壤中无机氮以铵态氮为主;铵态氮质量比随着土层深度的增加而降低,20~60cm深度土层中的铵态氮质量比相对稳定,随着水稻生育期的进行,稻田土壤中氨态氮质量比逐渐降低;稻田土壤中硝态氮质量比呈现上层低于下层的趋势;控制灌溉稻田施用控释肥减少了表层土壤中的铵态氮质量比以及底层土壤中的铵态氮和硝态氮质量比,降低了氮素损失的风险。控制灌溉和控释肥的使用,减少了稻田氨挥发损失,减少幅度达到83.71%。  相似文献   

2.
层状土壤条件下地下滴灌水氮运移模型及应用   总被引:4,自引:1,他引:3  
刘玉春  李久生 《水利学报》2012,43(8):898-905
基于土壤水分运动的动力学方程和溶质运移的对流-弥散方程,考虑地下滴灌灌水器流量随时间的变化,建立了层状土壤地下滴灌施用硝酸铵(NH4NO3)条件下水氮运移的数学模型。利用均质砂土(S)、均质壤土(L)、上砂下壤(SL)和砂土夹层(LSL)四种土壤的试验数据对模型进行了验证。结果指出,考虑土壤中灌水器流量随时间变化可稍改善土壤含水率和硝态氮的模拟精度。利用验证后的数学模型研究了灌水器流量(1.1、1.75和2.6L/h)、灌水器与犁底层相对位置对地下滴灌水氮分布的影响,模拟结果表明灌水器流量对含水率分布的影响不明显,但灌水器流量的增大可明显增加20~40cm土层硝态氮含量;灌水器与犁底层相对位置对水氮分布影响显著,灌水器位于犁底层中(埋深25cm)土壤表层干土层较薄、水氮向下运移深度较小,有利于减小土壤蒸发和避免水氮淋失。  相似文献   

3.
在华北平原中国农业大学东北旺实验田开展了水肥耦合灌溉实验,设置了传统和优化水肥4个组合处理,同时应用作者提出的联合模拟模型SPWS对2000年夏玉米生育期内的土壤水分、氮素转化运移以及水氮限制条件下夏玉米的叶面积指数、干物重、吸氮量及籽粒产量进行了模拟,模拟结果与实测数据均吻合良好。水氮平衡分析结果表明,优化灌溉和优化施肥管理措施均能明显减小水分渗漏、硝酸盐淋失和氮素的气体损失,且均有不同程度的增产作用,其中优化水肥处理下水氮利用率分别为1.33kg/m3和31.6kg/kgN,为4个组合处理中最高。  相似文献   

4.
通过对陕西毛乌素沙地典型湖滨带湿地有机碳和氮素的空间分布特征进行研究,为探讨湿地生态系统如何在沙化环境下发挥其特有的功能提供科学依据。在巴吓采当湖泊湖滨带A~F类型区采集土壤,测定土壤的有机碳、全氮、有机氮、硝态氮和铵态氮等指标。利用方差分析、Spearman相关性分析和主成分分析等方法分析对湖滨带有机碳、氮素空间分布特征进行研究。土壤表层0~10cm的有机碳和全氮含量随水位升高呈增加趋势。除了铵态氮外,有机碳、全氮、有机氮和硝态氮含量垂直分布上随着土壤深度增加呈降低趋势。土壤有机碳、全氮含量分别与全磷、土壤容重、含水率、水位显著相关。铵态氮和全磷、含水率、土壤容重、全氮、有机碳和水位等显著相关。硝态氮与微生物生物量碳、氮的相关系数分别为r=0.637和r=0.617(中度正相关)。有机碳及氮素的含量与土壤粘粒含量相关性不高。主成分分析提取3个主成分,累积贡献率达76.15%。土壤全磷、土壤含水率、土壤容重和水位是影响湖滨带土壤有机碳、氮素空间分布的主要因子。  相似文献   

5.
Soil aquifer treatment (SAT) is a promising technique for wastewater reclamation and reuse. This treatment strategy takes advantage of physicochemical and biological processes in the subsurface. The model employed in this study is based on MODFLOW-SURFACT (HydroGeoLogic, Inc.), a three-dimensional model for variably saturated flow and reactive mass transport. The model accounts for reactions including the nitrification of ammonium, the denitrification of nitrate, and the oxidation of organic carbon. Concentration of dissolved oxygen and biomasses involved in aerobic and anaerobic biological reactions forms the basis for estimates of nonlinear reaction rates formulated using a multiple-Monod expression. Illustrative simulations were conducted in a two-dimensional cross-sectional domain, with unsaturated and saturated zones. They examine the effects that site and operational conditions have on the performance of a SAT system. The parameters and conditions of concern included length of the wet/dry cycle, ground surface condition, and infiltration rate. From the simulations, we found that organic carbon was effectively removed in all cases. The availability of oxygen was a key factor in predicting the production and removal of nitrate. Overall, the model successfully described the fate and transport of the key constituents during the wet/dry operational periods in both unsaturated and saturated subsurface.  相似文献   

6.
Twelve research wetlands were operated under varying conditions at a site west of the city of Phoenix. These were constructed as a triplicated design, with zero, one, two and three internal deep zones, all containing an inlet distribution and an outlet collection deep zone, together comprising 12.5-35% of the wetland areas. The water supply was partially nitrified effluent from a city wastewater treatment plant. Total nitrogen was reduced by about 50%, from inflow concentrations between 6 and 8 mg/L. Speciation of the inflow was approximately 25% organic nitrogen, 25% ammonium nitrogen and 50% nitrate nitrogen. Typical outflow concentrations were about 1.2 mg/L organic, 0.5 mg/L ammonium and 0.0-2.5 mg/L nitrate. Rate constants for total nitrogen were 15-20 m/year at 20 degrees C, and 20-30 m/year for nitrate, which agree well with other project reports. Temperature factors averaged 1.100 for total nitrogen, and 1.184 for nitrate. There were no differences in the internal hydraulics with deep zone numbers. Deep zone numbers in the wetlands did not affect nitrogen treatment performance. No differences with deep zone numbers were found for temperature, dissolved oxygen, pH, or nitrogen removals or rate constants. In conjunction with other reported results, there appears to be no large treatment benefit or detriment of incorporating internal deep zones in free water surface wetlands.  相似文献   

7.
滴灌施肥灌溉的水氮运移数学模拟及试验验证   总被引:23,自引:0,他引:23  
李久生  张建君  饶敏杰 《水利学报》2005,36(8):0932-0938
基于土壤水分运动的动力学方程和溶质运移的对流-弥散方程,建立了不同土壤中地表滴灌施硝酸铵(NH4NO3)时水分和硝态氮运移的数学模型及边界条件。利用商业化软件HYDRUS-2D对模型进行了求解。为了验证所建立的模型,分别在壤土和砂土两种土壤上进行了不同滴头流量、灌水量和肥液浓度下的湿润距离、土壤含水率和硝态氮分布试验。模拟结果与试验数据的对比表明,利用HYDRUS-2D求解所建立的模型得到的湿润距离随时问的变化过程、土壤含水率和硝态氮分布与实测值吻合良好。因此,HYDRUS-2D软件可以作为预测滴灌施肥灌溉条件下水分和氮素在土壤中运移的有效工具。  相似文献   

8.
骆马湖水质对菹草不同生长期的响应研究   总被引:1,自引:0,他引:1  
采用原位观测手段研究了骆马湖菹草生长区水质与菹草不同生长期的响应关系。结果表明:指数生长期和石芽生成期,水体中的pH值、ORP值和DO质量浓度升高,COD质量浓度降低;植株衰亡期则相反,菹草腐烂导致有草区的水体TP质量浓度升高,但是由于反硝化作用,水体中TN与硝氮质量浓度反而下降。菹草在生长过程中直接吸收水体中的硝氮,对氨氮的去除则为间接作用,此时水体中的氮以硝氮为主;当菹草衰亡时,氨氮成为水体中氮的主要存在形态。菹草密度是影响水体各形态氮浓度的重要因素,在菹草生长时,菹草密度与TN和硝氮质量浓度显著负相关(P 0.01);当菹草衰亡时,与菹草稀疏区相比,菹草密集区TN和硝氮质量浓度更低,而氨氮质量浓度更高。指数生长期,骆马湖最优菹草密度为83.75 g/m~3。  相似文献   

9.
The phenomenon of mineralisation of organic nitrogen has been investigated in a section of the floodplain of the River Adour, between Saubusse and Le Vimport, in southwest France. Water quality parameters have been measured at a number of piezometers within the floodplain: nitrate concentrations measured at the sites were generally negligible during the 15-month period studied, significant levels of dissolved ammonium ion were, however, observed during this period. A mechanism of partial mineralisation has been invoked that considers the breakdown of organic nitrogen within the sediments of the floodplain. The level of the water-table is observed to modulate further oxidation of ammonium ion to nitrite and nitrate ion: low groundwater levels allow aerobic oxidation but increased water levels reduce the production of nitrate. Denitrification and uptake by riparian vegetation appear to be combining rapidly to reduce the nitrate as it is produced. The fine particle size of the floodplain sediments permits the storage of considerable quantities of organic nitrogen and the high level of mineralisation of this stock, responding to variations in the water table, provides an explanation for the increasing nitrate concentrations observed in the river channel in recent years. It is estimated that ca. 24% of the sub-surface organic nitrogen is removed each year.  相似文献   

10.
The reactive (fixed) nitrogen (Nr) budget for Lake Michigan was estimated, making use of recent estimates of watershed and atmospheric nitrogen loads. Reactive N is considered to include nitrate, nitrite, ammonium, and organic N. The updated Nr load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study for two reasons: 1) recent estimates of watershed loads were greater than previous estimates and 2) estimated atmospheric dry deposition and deposition of organic N were included in our budget. Atmospheric and watershed Nr loads were nearly equal. The estimated loss due to denitrification at the sediment surface was at least equal to, and possibly much greater than, the combined loss due to outflow and net sediment accumulation. Within the considerable uncertainty of the denitrification estimate, the budget was nearly balanced, which was consistent with the slow rate of accumulation of nitrate in Lake Michigan (~ 1%/yr). The updated loads were used to force the LM3-PP biogeochemical water quality model. Simulated water column concentrations of nitrate and organic nitrogen in the calibrated model were consistent with available observational data when denitrification was included at the sediment surface at a rate that is consistent with literature values. The model simulation confirmed that the estimated denitrification rate does not exceed the availability of settling organic N mass. Simulated increase (decrease) in nitrate concentration was sensitive to model parameters controlling supply of sediment organic N, highlighting the importance of internal processes, not only loads, in controlling accumulation of N.  相似文献   

11.
For economic and efficient nitrogen removal from wastewater treatment plants via simultaneous nitrification and denitrification the nitrification process should stop at the level of nitrite such that nitrite rather than nitrate becomes the substrate for denitrification. This study aims to contribute to the understanding of the conditions that are necessary to improve nitrite reduction over nitrite oxidation. Laboratory sequencing batch reactors (SBRs) were operated with synthetic wastewater containing acetate as COD and ammonium as the nitrogen source. Computer controlled operation of the reactors allowed reproducible simultaneous nitrification and denitrification (SND). The oxygen supply was kept precisely at a low level of 0.5 mgL(-1) and bacterial PHB was the only electron donor available for denitrification. During SND little nitrite or nitrate accumulated (< 20% total N), indicating that the reducing processes were almost as fast as the production of nitrite and nitrate from nitrification. Nitrite spiking tests were performed to investigate the fate of nitrite under different oxidation (0.1-1.5 mgL(-1) of dissolved oxygen) and reduction conditions. High levels of reducing power were provided by allowing the cells to build up to 2.5 mM of PHB. Nitrite added was preferentially oxidised to nitrate rather than reduced even when dissolved oxygen was low and reducing power (PHB) was excessively high. However, the presence of ammonium enabled significant reduction of nitrite under low oxygen conditions. This is consistent with previous observations in SBR where aerobic nitrite and nitrate reduction occurred only as long as ammonium was present. As soon as ammonium was depleted, the rate of denitrification decreased significantly. The significance of the observed strongly stimulating effect of ammonium on nitrite reduction under SND conditions is discussed and potential consequences for SBR operation are suggested.  相似文献   

12.
黄河下游引黄灌区主要河系硝态氮及铵态氮安全评价   总被引:4,自引:0,他引:4  
以德州引黄灌区为例,探讨灌区主要水系部分水化学特征及硝态氮(NO-3-N)与铵态氮(NH+4-N)污染状况。结果表明,pH、电导率(EC)、NO-3-N及NH+4-N含量存在明显的空间差异。NO-3-N受人类活动影响,灌区北部卫运河-漳卫新河以及德惠新河污染严重,呈带状分布;而马颊河及徒骇河受引黄水补给的影响范围较广,污染程度相对较低。NH+4-N污染除卫运河外,主要呈点源分布,各水系均有超标河段,而影响NH+4-N的可能因素更多,有待进一步深入研究。本研究为评价该区引黄灌渠对NO-3-N和NH+4-N的影响提供科学依据。  相似文献   

13.
不同氮源对黄花鸢尾净化富营养化水体的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用水生植物床系统研究了不同氮源(硝酸盐、亚硝酸盐、铵盐)对黄花鸢尾(Iris pseudoacorus)去除水体氮磷营养盐效率的影响,同时对植物的生长量、水体中叶绿素a含量、黄花鸢尾对氮磷的吸收利用以及氮循环细菌的分布和氧化亚氮的通量进行了综合研究。结果表明:黄花鸢尾对硝酸盐氮具有优先选择性,而对氨氮的去除效果较差。从植物总氮、总磷吸收量来看,3种氮源中硝酸盐氮>亚硝酸盐氮>氨氮;从氮循环菌分布和N2O释放量来看,硝酸盐氮>氨氮>亚硝酸盐氮。一定范围内,植物对营养盐的吸收随营养盐浓度增加而增加,但水体中营养盐浓度过高则会抑制植物的生长,浓度为80 mg/L的硝酸盐氮,亚硝酸盐氮和氨氮都对黄花鸢尾生长有抑制作用,尤其是高浓度氨氮溶液中,植物的湿重明显减少,因此,黄花鸢尾更适宜治理硝酸盐污染的水体。  相似文献   

14.
Performance of SBR treatment for nitrogen removal from tannery is evaluated for a wide range of wastewater temperature between 7 and 30 degrees C. A pilot-scale SBR unit fed with plain-settled wastewater is operated on site for this purpose. Effective nitrogen removal is sustained by adjustment of the sludge age from 28 to 5 days. Concentration profiles of nitrogen compounds within a selected complete SBR cycle during the steady state operation at different wastewater temperatures and sludge ages are evaluated by model simulation. System performance is also interpreted in terms of modeling and stoichiometric calculation. Additional nitrate loss was observed during aerobic period when the aeration intensity was reduced by the factor of 50%.  相似文献   

15.
Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.  相似文献   

16.
为了探究生物有机肥和控制灌溉联合调控下稻田土壤氮素变化的特征和规律,开展了水稻小区种植试验。试验设置2种灌溉模式(常规淹灌(F)、控制灌溉(C))和3种施肥模式(全施化肥(A)、生物有机肥等氮替代15%化学氮肥(B)、生物有机肥等氮替代30%化学氮肥(C)),分析水稻生育期内土壤铵态氮与硝态氮含量的变化特征。试验表明:至水稻分蘖期时,相同灌溉模式下,配施生物有机肥处理的稻田土壤铵态氮含量均值均低于全施化肥处理,降幅为19.85%~48.78%,土壤硝态氮含量均值是生物有机肥等氮替代30%化学氮肥的处理低于全施化肥处理,降幅为15.35%~33.08%;而从水稻拔节期起,相同灌溉模式下配施生物有机肥处理的稻田土壤铵态氮平均含量比全施化肥处理增加了12.71%~56.26%,除FB处理硝态氮含量降低外其余配施生物有机肥处理的土壤硝态氮平均含量比全施化肥处理增加了19.21%~105.80%。控制灌溉的水稻全生育期土壤硝态氮含量显著高于常规淹灌(P<0.05),而土壤铵态氮含量则是常规淹灌高于控制灌溉。结果表明:生物有机肥配施化肥有利于水稻分蘖期后土壤铵态氮和硝态氮含量的积累,提升了稻田土壤氮素的养分累积,其中生物有机肥等氮替代15%化肥的效果较好。控制灌溉使得土壤硝态氮含量增加,同时也减少了土壤铵态氮的含量。综合考虑环境与经济效益,控制灌溉与生物有机肥等氮替代15%化肥的稻田水肥管理模式较好。  相似文献   

17.
18.
In-sewer transformation processes affect wastewater quality. Especially during dwf the transformation processes can exert a significant influence on wastewater quality. The transformation rates under aerobic conditions were estimated from an oxygen mass balance over a sewer reach. Oxygen probes were installed at the upstream and downstream end of the sewer reach. Moreover, 14 wastewater samples, taken at the downstream end of the sewer reach, were used to measure the oxygen uptake rate and the water quality parameters COD(total), COD(dissolved) and ammonium. The results show that the rate of fluctuations in COD concentrations in sewer systems is an order of magnitude higher than the aerobic transformation rate. Consequently, it is concluded that the aerobic transformations in sewer systems are generally not relevant with respect to the influent fluctuations for Dutch wastewater systems. However, in situations with very long aerobic transport times, the aerobic conversions can be significant. An ASM1 based model concept for transformations in sewer systems was used to study the applicability of the model for Dutch sewer conditions. The difference between the measured and simulated values was rather low for the range of upstream dissolved oxygen and COD(total), COD(dissolved) and COD(suspended) levels. Therefore, it is concluded that the ASM1 based sewer model properly describes the changes in dissolved oxygen level in an aerobic sewer reach.  相似文献   

19.
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.  相似文献   

20.
为了解亚热带水源型水库——茜坑水库水质状况,基于2016年1月至2020年12月对水库pH值、高锰酸盐指数、五日生化需氧量、粪大肠菌群、氨氮、硝酸盐氮、总氮、总磷、硫酸盐、氯化物、氟化物、铁和锰等13个主要水质指标每月1次的监测数据,通过计算水质综合指数评价了水质状况,并通过多元线性回归优化水质综合指数模型。结果表明:水库水质整体较好,pH值和高锰酸盐指数受浮游植物繁殖影响,部分时段超标,总氮质量浓度偏高,总磷质量浓度和粪大肠菌群数部分时段较高,铁质量浓度的上升趋势应重点关注;表层监测难以全面体现分层对水质的影响,应增加垂向监测,全面掌握水库水质风险;利用由总磷、铁、高锰酸盐指数、氨氮和硝酸盐氮组成的主要污染指标水质综合指数模型可有效进行水质评价和管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号