首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal participation in post-burn hypertrophic scar development   总被引:3,自引:0,他引:3  
 The reconstruction of epidermal architecture over time in normotrophic and hypertrophic scars in untransplanted, spontaneously healed partial-thickness burns has scarcely been studied, unlike the regeneration of epidermal grafts used to cover burn wounds and the regeneration of the dermis during hypertrophic scarring. The expression of markers of epidermal proliferation, differentiation and activation in normotrophic and hypertrophic scars in spontaneously healed partial-thickness burns was assessed and compared with the expression of these markers in normal control skin of healthy persons to determine whether hypertrophic scarring is associated with abnormalities in the phenotype of keratinocytes. Punch biopsies were taken both of partial-thickness burns after re-epithelialisation and of matched unburned skin. At 4 and 7 months post-burn, biopsies were taken of normotrophic and hypertrophic scars that had developed in these wounds. The biopsies were analysed using immunostaining for markers of keratinocyte proliferation, differentiation and activation (keratins 5, 10, 16 and 17, filaggrin, transglutaminase and CD36). We observed a higher expression of markers for proliferation, differentiation and activation in the epidermis of scars at 1 month post-burn than in normal control skin of healthy persons. There was a striking difference between normotrophic and hypertrophic scars at 4 months post-burn. Keratinocytes in hypertrophic scars displayed a higher level of proliferation, differentiation and activation than did normotrophic scars. At 7 months post-burn all keratinocyte proliferation and differentiation markers showed normal expression, but the activation marker CD36 remained upregulated in both normotrophic and hypertrophic scars. Surprisingly, in matched unburned skin of burn patients, a state of hyperactivation was observed at 1 month. Our results suggest that keratinocytes may be involved in the pathogenesis of hypertrophic scarring. Received: 16 September 1998 / Accepted: 28 September 1998  相似文献   

2.
Activated keratinocytes in the epidermis of hypertrophic scars.   总被引:8,自引:0,他引:8       下载免费PDF全文
The etiology of hypertrophic scarring, a pathological end point of wound healing, is unknown. The scars most commonly occur when epithelialization has been delayed during, for example, the healing of deep dermal burn wounds. Hypertrophic scars are conventionally described as a dermal pathology in which the epidermis has only a passive role. In this study, the expression of keratin intermediate filament proteins and filaggrin has been investigated in the epidermis of hypertrophic scars and site-matched controls from the same patients. Hypertrophic scar epidermis was found to express the hyperproliferative keratins K6 and K16 in interfollicular epidermis in association with K17 and precocious expression of filaggrin. K16 mRNA was localized by in situ hybridization using a highly specific cRNA probe. In contrast to the immunohistochemical location of K16 protein, the K16 mRNA was found to be expressed in the basal cell layer of normal skin. In hypertrophic scars the mRNA distribution corroborated the abnormal K16 protein distribution. These results suggest the keratinocytes in hypertrophic scar epidermis have entered an alternative differentiation pathway and are expressing an activated phenotype. Activated keratinocytes are a feature of the early stages of wound healing producing growth factors that influence fibroblasts, endothelial cells, and the inflammatory response. We propose that cellular mechanisms in the pathogenesis of hypertrophic scarring are more complex than isolated dermal phenomena. The persistence of activated keratinocytes in hypertrophic scar epidermis implicates abnormal epidermal-mesenchymal interactions.  相似文献   

3.
4.
While some cutaneous squamous cell carcinomas (SCC) arise from predisposing conditions such as burn scars, draining sinuses, and chronic, nonhealing wounds, the vast majority of these tumors arise from actinically damaged epidermis. It has been shown previously that keratinocytes within healing wounds show an "activated" immunophenotype when stained with antibodies to psi-3, involucrin, filaggrin, and cytokeratins. A similar pattern has been seen in keratinocytes from patients with recessive dystrophic epidermolysis bullosa (RDEB), in whom the incidence of cutaneous SCC is markedly increased. We tested the hypothesis that actinic keratoses (AK), recognized as precursors in the development of the majority of SCC, would show a similar activated immunophenotype when stained with the antibody panel described above. We examined 10 AK, biopsied from the facies and extremities of ten patients, ages 60 to 80, with antibodies to psi-3, involucrin, filaggrin, and AE1. All lesions examined had an immunostaining pattern indistinguishable from that seen in keratinocytes from patients with RDEB or within healing wounds. There was suprabasilar staining of keratinocytes with antibodies to psi-3 and AE1. Involucrin and filaggrin was expressed by all keratinocytes above the midstratum spinosum. Within the acrosyringia and acrotrichia, the staining pattern was that of the normal epidermis, i.e., AE1 staining of basal keratinocytes, granular layer staining of involucrin and filaggrin, and absence of psi-3 expression. These data suggest that an activated keratinocyte phenotype is a unifying feature in conditions which predispose to development of cutaneous SCC.  相似文献   

5.
Receptor-mediated apoptosis is proposed as an important regulator of keratinocyte homeostasis in human epidermis. We have previously reported that Fas/FasL interactions in epidermis are altered during cutaneous leishmaniasis (CL) and that keratinocyte death through apoptosis may play a pathogenic role for skin ulceration. To further investigate the alterations of apoptosis during CL, a keratinocyte cell line (HaCaT) and primary human epidermal keratinocytes were incubated with supernatants from Leishmania major-infected peripheral blood mononuclear cells. An apoptosis-specific microarray was used to assess mRNA expression in HaCaT cells exposed to supernatants derived from L. major-infected cultures. Fas and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA and protein expression were significantly up-regulated, and apoptosis was detected in both HaCaT and human epidermal keratinocyte cells. The keratinocyte apoptosis was partly inhibited through blocking of Fas or FasL and even more efficiently through TRAIL neutralization. Up-regulation of Fas on keratinocytes in epidermis and the presence of FasL-expressing macrophages and T cells in dermis were previously reported by us. In this study, keratinocytes expressing TRAIL, as well as the proapoptotic receptor TRAIL-R2, were detected in skin biopsies from CL cases. We propose that activation of Fas and TRAIL apoptosis pathways, in the presence of inflammatory mediators at the site of infection, leads to tissue destruction and ulceration during CL.  相似文献   

6.
To test the influence of fibroblasts on epithelial morphology and expression of keratinocyte proteins and barrier lipids, we bioengineered homotypic and heterotypic oral mucosae and skin using cultured adult human cells. Fibroblasts were allowed to modify collagen type I gels for 2 weeks before keratinocytes were added. The organotypic cultures were then grown at the air-liquid interface for 4 weeks. In homotypic combinations, epithelial morphology and protein expression closely mimicked those in vivo. In heterotypic combinations, the morphology resembled that in vivo and keratinocytes expressed their typical markers, except when skin keratinocytes were recombined with alveolar fibroblasts; they expressed K19, K4, and K13, which is similar to oral mucosal epithelia rather than to the epidermis. Morphologically, the stratum corneum layers were typical for the epithelial tissues. Grafting the bioengineered cultures to the backs of Nude mice did not change the results, suggesting that our findings are not merely a culture phenomenon. Lipid profiles of the homotypic combinations mimicked the profiles found in the normal epithelial tissues, except that the engineered alveolar epithelium expressed more ceramide 2 than that in vivo. In the heterotypic combinations, keratinocytes appeared to control the lipid profile, except in the combination of skin keratinocytes with alveolar fibroblasts, wherein the ceramide profile appeared to be partly that of alveolar epithelium and partly that of epidermis. These results suggest that cultured adult fibroblasts and keratinocytes are sufficient to recapitulate graftable oral tissues, and, except for alveolar fibroblasts, the type of fibroblast had little influence on keratinocyte differentiation.  相似文献   

7.
Immunoperoxidase staining of skin sections obtained from 11 hypertrophic scars, six normotrophic scars and three samples of normal skin were performed using anti-HLA monoclonal antibodies (HLA-DR, -DQ, class I), anti-interleukin-2 receptor (IL-2R) and anti-CD1. Sections from all hypertrophic scars showed an anomalous expression of HLA-DR molecules on keratinocytes and fibroblasts. Moreover hypertrophic scars were characterized by dense infiltrates of IL-2R-positive cells and by the presence of abundant Langerhans (CD1+) cells in the epidermis and dermis. These results support the hypothesis that immunologic mechanisms play an important role in hypertrophic scarring and point to an involvement of cell-mediated immune phenomena.  相似文献   

8.
The role of epidermal keratinocytes in the early phases of normal unimpaired wound healing has been studied extensively. However, little is known about the cell biological processes in the epidermis and the basal membrane zone during the later phases of dermal matrix formation and remodelling of the scar tissue. This study investigated epidermal growth and differentiation and maturation of the basal membrane zone. Biopsies were taken from (clinically) hypertrophic and non-hypertrophic scars at 3 and 12 months after a breast- reduction operation. Tissues were analysed using immunohistochemical techniques. The data showed that epidermal abnormalities with respect to differentiation persist up to 3 months, as witnessed by the expression of cytokeratin 16. Remarkably, hypertrophic scars that remained hypertrophic throughout the period of analysis (up to 12 months) showed significantly more cytokeratin 16 expression at 3 months, when compared either with normal scars or with hypertrophic scars that became normal after 12 months. Staining for Ki-67 antigen, a marker for cell proliferation, revealed an increase in basal keratinocyte proliferation rate in 3-month-old hypertrophic scars compared with non-hypertrophic scars. After 12 months, this difference had disappeared completely and the number of cycling basal cells had returned to normal values. Three-month-old hypertrophic scars showed more acanthosis than non-hypertrophic scars of the same age, irrespective of whether they remained hypertrophic or became normal scars. After 12 months, this difference was no longer present. Staining for various heparan sulphate proteoglycan epitopes revealed that restoration of the basal membrane was incomplete at 3 months, but was complete at 12 months with respect to this component. No differences in the expression of several components of the basal membrane zone (heparan sulphate proteoglycan, laminin, tenascin) were noted between hypertrophic and non-hypertrophic scars. These data show that in the early phase of hypertrophic scarring, epidermal abnormalities are found compared with normal wound healing. In addition, early (3 months) epidermal abnormalities are associated with the clinical outcome at 12 months. These findings raise the possibility that the epidermal compartment is involved in the pathogenic process. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
10.
This study aimed to evaluate and correlate osteopontin (OPN) expression in oral squamous cell carcinoma (OSCC) and potentially malignant disorders including oral leukoplakia and oral submucous fibrosis (OSMF). Expression of OPN was investigated in 140 samples including OSCC, oral leukoplakia, and OSMF with or without dysplasia and normal oral mucosa. By using immunohistochemistry. Both intercellular and intracellular staining of the keratinocytes was considered to be positive, and intensity grading was assessed. Statistical analysis was done using analysis of variance. OPN positivity was detected in 85% cases of OSCC, 55% cases of oral leukoplakia, 35% cases of OSMF, and 60% cases of normal mucosa. These study highlights OPN as a biomarker for malignancy in the form of invasion but not to study progression from dysplasia to malignant transformation.  相似文献   

11.
Keratins are intermediate filament proteins whose expression in epithelial tissues is closely linked to their differentiated state. The greatest complexity of this expression is seen in the epidermis and associated structures. The critical basal (proliferative) cell layer expresses the major keratin pair, K5 and K14, but it also expresses an additional type I keratin, K15, about which far less is known. We have compared the expression of K15 with K14 in normal, pathological, and tissue culture contexts; distinct differences in their expression patterns have been observed that imply different regulation and function for these two genes. K15 appears to be preferentially expressed in stable or slowly turning over basal cells. In steady-state epidermis, K15 is present in higher amounts in basal cells of thin skin but in lower amounts in the rapidly turning over thick plantar skin. Although remaining high in basal cell carcinomas (noninvasive) it is suppressed in squamous cell carcinomas (which frequently metastasize). Wounding-stimulated epidermis loses K15 expression, whereas K14 is unchanged. In cultured keratinocytes, K15 levels are suppressed until the culture stratifies, whereas K14 is constitutively expressed throughout. Therefore, unlike K14, which appears to be a fundamental component of all keratinocytes, K15 expression appears to be more tightly coupled to a mature basal keratinocyte phenotype.  相似文献   

12.
The distributions of the small proteoglycans, decorin and biglycan and the large proteoglycan, versican, in normal skin and post-burn hypertrophic and mature scars, were compared using monoclonal and polyclonal antibodies to the core proteins. Biglycan and verscan were virtually undetectable in normal dermis but readily seen in hypertrophic scars. Staining for decorin was strong throughout the dermis in normal skin but restricted to the deep dermis and a narrow zone under the epidermis in hypertrophic scar—areas which did not stain for versican. Decorin was absent or reduced in the nodules in these specimens. In mature post-burn scars, staining for all three proteoglycans demonstrated an intensity that was intermediate between that in normal dermis and that in the nodules of the hypertrophic scars. Transforming growth factor-β was present in the nodules of hypertrophic scars but the deep dermis of these specimens stained most intensely for this cytokine which was also found in the dermis of mature scars but was not detectable in normal dermis. The apparent co-distribution of decorin and transforming growth factor-β suggests that this proteoglycan may play an active role in the resolution of the scars. Changes in proteoglycan type and distribution could possibly account, at least in part, for the derangement of collagen and the altered physical properties of hypertrophic scar tissue.  相似文献   

13.
In predisposed individuals, wound healing can lead to hypertrophic scar or keloid formation, characterized by an overabundant extracellular matrix. It has recently been shown that hypertrophic scars are accompanied by abnormal keratinocyte differentiation and proliferation, and significantly increased acanthosis, compared with normal scars. This study addressed the question of whether the development of normal and hypertrophic scars is regulated by differences in the growth factor profiles of both the epidermis and the dermis. The presence of interleukin-1alpha (IL-1alpha), IL-1beta, tumour necrosis factor-alpha (TNF-alpha), platelet-derived growth factor (PDGF), transforming growth factor-beta1 (TGF-beta1), and basic fibroblast growth factor (bFGF) was investigated in biopsies taken from breast reduction scars at 3 and 12 months following surgery. The samples were analysed by immunohistological methods and categorized as scars that remained hypertrophic (HH), became normal (HN) or remained normal after 12 months (NN). The epidermal expression of IL-1alpha was significantly increased in NN scars compared with HN and HH scars 3 and 12 months following operation, whereas the dermal expression showed no difference. PDGF was significantly increased in the dermis of normal scars after 3 months and in both the epidermis and the dermis of hypertrophic scars after 12 months. IL-1beta, TNF-alpha, TGF-beta and bFGF showed no differences. It is hypothesized that impaired production of keratinocyte-derived growth factors, such as IL-1alpha, leads to a decrease in the catabolism of the dermal matrix, whereas augmented epidermal PDGF production leads to increased formation of the dermal matrix in hypertrophic scars. These observations support the possibility that the epidermis is involved in preventing the formation of hypertrophic scars.  相似文献   

14.
Interactions between T lymphocytes, neutrophils, and epidermal cells are believed to play a central role in the pathophysiology of psoriasis and other inflammatory cutaneous disorders. Although there is strong evidence that lymphocyte-function-associated antigen-1 (LFA-1) positive T cells are retained in the epidermis via intercellular adhesion molecule-1 (ICAM-1) expression induced on keratinocytes, the molecular basis for the directed migration of T cells or neutrophils towards the epidermis is not known. To investigate whether epidermal keratinocyte-derived products may be important in the migration of T cells and neutrophils into the epidermis, human keratinocytes were cultured in the presence of various cytokines and chemotactic activity of the supernatants were assessed. TNF-alpha stimulation produced directed migrational responses for both neutrophils and T-lymphocytes (both CD4 and CD8), but not B lymphocytes; 69% of T-cell movement and 80% of neutrophil migration induced by the TNF-alpha treated keratinocyte cell supernatants could be inhibited by anti-interleukin-8 (IL-8) serum. Using the same antibody, IL-8 was immunoprecipitated from the supernatants of TNF-stimulated 35S-labelled keratinocytes, and a single 7-kd band product detected by SDS-PAGE. In keeping with these biological activities and protein data, Northern blot analysis of total cellular RNA extracted from keratinocyte monolayers hybridized with a 32P-labelled 1-kb cDNA to IL-8 mRNA, revealed induction of the IL-8 gene in the presence of TNF-alpha and IL-1 beta, but not IFN-gamma. The protein kinase C agonist, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a known stimulator of psoriasiform cutaneous inflammation when applied directly to murine epidermis, strongly induced keratinocyte elaboration of IL-8 mRNA. These studies demonstrate that activated human keratinocytes are capable of producing biologically active IL-8, and provide evidence that keratinocytes can play a key role in mediating the influx of T cells and neutrophils into the epidermis.  相似文献   

15.
The expression of Cox-2 protein was studied by immunohistochemistry in normal oral mucosa and in mucosa with various lesions of oral leukoplakia, including hyperplasia and dysplasia of squamous epithelium and frank invasive squamous carcinoma. A gradient of Cox-2 staining was found: the expression of Cox-2 was lowest in normal epithelium, somewhat increased in hyperplastic epithelium, further increased in dysplastic epithelium, and highest in invasive squamous cell carcinomas. The presence of Cox-2 in squamous cell carcinomas of the oral mucosa and its precursor lesions indicate that Cox-2 could participate in the carcinogenic process of these oral malignancies.  相似文献   

16.
The authors have studied the expression of keratin 19 in normal oral mucosa and in oral lesions exhibiting a range of histopathologic changes that are thought to precede squamous cell carcinoma. Formalin-fixed, paraffin-embedded sections were pretreated with pronase and stained with a K19-specific antibody by the avidin-biotin immunoperoxidase method. In nonkeratinized mucosa, whether normal or benign hyperplastic, K19 was detectable in the basal cell layer. In keratinized mucosa, whether normal or benign hyperplastic, there was no detectable K19. All lesions from any oral site that exhibited atypia diagnosed from hematoxylin and eosin stained sections as moderate-to-severe dysplasia or carcinoma in situ, whether hyperkeratotic or not, stained strongly for K19 in the basal and suprabasal cell layers. The number of cell layers that were K19-positive correlated with the level in the epithelium to which dysplasia persisted. Suprabasal K19 staining tended to occur in regions of the epithelium in which expression of the terminal differentiation protein involucrin was delayed or absent. Thus, K19 expression may be linked to the retention of stem cell character or a state otherwise uncommitted to terminal squamous differentiation. Suprabasal K19 staining is clearly correlated with premalignant change in oral epithelium and therefore promises to be a useful tool in oral histopathologic diagnosis.  相似文献   

17.
18.
Mouse models of cancer represent powerful tools for analysing the role of genetic alterations in carcinogenesis. Using a mouse model that allows tamoxifen-inducible somatic activation (by Cre-mediated recombination) of oncogenic K-ras(G12D) in a wide range of tissues, we observed hyperplasia of squamous epithelium located in moist or frequently abraded mucosa, with the most dramatic effects in the oral mucosa. This epithelium showed a sequence of squamous hyperplasia followed by squamous papilloma with dysplasia, in which some areas progressed to early invasive squamous cell carcinoma, within 14 days of widespread oncogenic K-ras activation. The marked proliferative response of the oral mucosa to K-ras(G12D) was most evident in the basal layers of the squamous epithelium of the outer lip with hair follicles and wet mucosal surface, with these cells staining positively for pAKT and cyclin D1, showing Ras/AKT pathway activation and increased proliferation with Ki-67 and EdU positivity. The stromal cells also showed gene activation by recombination and immunopositivity for pERK indicating K-Ras/ERK pathway activation, but without Ki-67 positivity or increase in stromal proliferation. The oral neoplasms showed changes in the expression pattern of cytokeratins (CK6 and CK13), similar to those observed in human oral tumours. Sporadic activation of the K-ras(G12D) allele (due to background spontaneous recombination in occasional cells) resulted in the development of benign oral squamous papillomas only showing a mild degree of dysplasia with no invasion. In summary, we show that oral mucosa is acutely sensitive to oncogenic K-ras, as widespread expression of activated K-ras in the murine oral mucosal squamous epithelium and underlying stroma can drive the oral squamous papilloma-carcinoma sequence.  相似文献   

19.
Reproducible multi-stage progression to invasive squamous carcinoma of the epidermis has been achieved in transgenic mice expressing the HPV16 early-region genes, including the E6/E7 oncogenes, under the control of the human keratin-14 promoter/enhancer. Although 100% of K14-HPV16 transgenic animals develop hyperplastic and/or dysplastic lesions in several inbred backgrounds, including C57BL/6, BALB/c, and SSIN/SENCAR, only mice backcrossed into the FVB/n background progress to malignant squamous cell carcinomas of two pathological grades, well differentiated and moderate/poorly differentiated (WDSC or MPDSC, respectively), each displaying characteristic patterns of malignant behavior. WDSCs typically arise within the epidermis of the ear and invade deeply into the underlying dermis but fail to metastasize, whereas MPDSCs develop on the chest and truncal skin and invariably metastasize to regional lymph nodes. The transition to the malignant state, in 21% of FVB/n transgenic mice, is characterized by alteration of the repertoire of keratin intermediate filament proteins expressed within neoplastic epidermis, such that WDSCs maintain expression of keratins common to terminally differentiating stratified keratinocytes (K10), whereas MPDSCs are distinguished from WDSCs by activation of embryonic and mucosal keratins (K13, K8, and K19). Precursor hyperplastic and dysplastic lesions are characterized by a progressively increased proliferative index, striking morphological alterations in keratinocyte cell-cell and cell-matrix interactions, and extensive remodeling of the underlying dermal stroma. Remarkably, this extensive stromal remodeling, which may facilitate both angiogenesis and eventual tumor cell invasion, develops early at the dysplastic stage in all animals well before malignant conversion.  相似文献   

20.
To investigate the effects of basement membrane proteins on the reconstruction of mucosa equivalent, oral mucosa substitute were cultured on (1) type I collagen gels, (2) type IV collagen-coated type I collagen gels, (3) laminin-coated type I collagen gels, and (4) type I collagen gels containing both type IV collagen and laminin. H/E and PAS staining showed that the characteristics of the oral mucosa were preserved under all the experimental conditions. However, the basal keratinocytes appeared cuboidal when the type I collagen gels were coated with type IV collagen plus laminin. The expression of the differentiation markers was similar, but weak staining of filaggrin, K13, and involucrin was observed with the type IV collagen plus laminin coating. Furthermore, electron microscopy revealed that the size of the basal keratinocytes was relatively small and uniform when both type IV collagen and laminin were used. These findings suggested that these two major basement membrane proteins are important in the process of differentiation in mucosal keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号