首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
环形燃料零功率反应堆是首个双面慢化环形燃料作为核燃料的反应堆。本文采用周期法、落棒法获取环形燃料零功率反应堆的临界参数、控制棒价值、元件价值、含Gd元件的反应性效应等关键参数,对环形燃料零功率反应堆的物理性能进行实验研究,验证环形燃料反应堆堆芯物理设计计算程序。结果表明:根据外推过程确定堆芯临界装载环形燃料元件96根,实心燃料元件172根,此时keff为1.000 40,堆芯调节棒价值为-247.5 pcm,安全棒价值为-1 358.4 pcm;元件价值与理论值平均偏差为1.3 pcm,含Gd元件反应性效应与理论值平均相对偏差为8.8%。本文结果为环形燃料的工程化设计程序提供关键数据支撑。  相似文献   

2.
小型反应堆通常具有模块化、建造周期短以及部署灵活的特点,可作为清洁的分布式能源,在供电的同时还能够实现海水淡化、区域供暖、工业供热等多种用途。环形燃料具有内外双层包壳,其双面冷却的结构形式可以显著改善燃料传热条件,有助于减小堆芯体积、提升反应堆的安全性和经济性。环形燃料应用于小堆可以充分发挥其优势,符合我国核能发展战略。本文通过一系列的比对分析确定了适用于小堆的环形燃料组件设计方案,并根据力学性能分析结果初步实现了组件结构设计;通过对两种不同类型的小型反应堆堆芯的物理、热工、安全等分析,论证了环形燃料应用于小堆的可行性。研究结果表明,环形燃料在小型反应堆中具有良好的应用前景。  相似文献   

3.
相对中子通量密度分布是反应堆的重要物理参数之一,测量环形燃料零功率反应堆堆芯相对中子通量密度分布对了解环形燃料堆芯反应堆物理特性及开展安全分析具有指导意义。本文在环形燃料堆芯多边形装载下,采用箔活化法对辐照后燃料元件外表面不同位置金箔的γ活度进行测量,得到不同位置燃料元件轴向、径向的相对中子通量密度分布,并将测量值与蒙特卡罗理论计算值进行比对。结果表明:实验测量值与理论计算值最大相对偏差在12%以内,相对中子通量密度分布测量结果符合实验设计预期,现有蒙特卡罗分析手段可较好地分析堆内元件轴向通量密度分布情况。本文结果可为环形燃料的工程化应用提供重要的数据支撑。  相似文献   

4.
针对环形燃料元件,基于欧洲铅冷系统反应堆ELSY选取环形燃料元件参数,建立环形燃料元件导热模型,设定环形燃料元件的初始参数并利用MATLAB编制环形燃料元件导热计算程序,通过制定的三个评估标准研究环形燃料流量分配比、内外包壳厚度、内外气隙厚度和芯块厚度对环形燃料元件热工性能的影响并进行几何尺寸修正。研究结果表明:适当增大流量分配比、减小内包壳厚度、增大外包壳厚度、减小内外气隙间距和减小芯块厚度可改善元件的热工性能;设定流量分配比为1、内包壳厚度0.06 cm修正为0.04 cm、外包壳厚度0.06 cm修正为0.07 cm、内外气隙间距0.035 cm修正为0.015 cm、芯块厚度修正为0.05 cm,进行这些几何尺寸修正后,芯块的最高温度下降了90 K(8.6%),绝热面位置偏离芯块几何中心不足2μm,内外通道冷却剂出口温差不足2 K,环形燃料元件热工性能得到了明显提高。  相似文献   

5.
秦山Ⅱ期核电站反应堆堆芯采用环形燃料后,锆装量将增加约88%,在严重事故情况下,堆芯氢气产量的变化是一值得关注的问题。利用MELCOR程序模拟环形燃料堆芯,建立典型严重事故序列分析模型,分析结果表明:在堆芯熔化过程中,与传统棒状燃料堆芯相比,环形燃料堆芯氢气产量没有明显增加,使用环形燃料还能推迟事故进程,缓解事故后果。核电站采用环形燃料,不会增大氢气燃烧的风险。  相似文献   

6.
秦山Ⅱ期核电站采用环形燃料LBLOCA研究   总被引:2,自引:2,他引:0  
环形燃料是一种采用双层包壳和环形芯块内外冷却的新型压水堆燃料,与传统的棒状燃料相比,新的结构形式使环形燃料具有更好的安全性能。秦山Ⅱ期核电站被选用为参考电站,对装载环形燃料元件的秦山Ⅱ期核电站进行大破口失水事故(LBLOCA)研究,并将环形燃料堆芯的计算数据与棒状燃料堆芯的比较。结果表明,采用环形燃料的核电站在事故过程中具有更好的安全性能。  相似文献   

7.
燃料组件的几何结构和栅格参数显著影响铅铋反应堆的物理/热工特性,采用不同几何结构燃料组件的堆芯在相同换料周期、热工限值约束下的临界尺寸、燃料装载量存在差异。本文开展小型轻量化铅铋反应堆的燃料组件几何结构研究,通过建立铅铋反应堆堆芯模型,选取棒束型、环形、蜂窝煤型燃料组件方案,比较分析了3种方案在堆芯尺寸、燃料装载量、冷却剂流通面积、包壳和气隙体积相同和在换料周期为10 a、稳态热工安全裕量基本一致条件下堆芯的燃耗特性、反应性系数、稳态热工特性参数。结果表明:相比于棒束型与环形燃料组件,蜂窝煤型燃料组件良好的稳态热工特性与较硬的中子能谱,采用蜂窝煤型燃料组件的堆芯可以实现更小的堆芯尺寸及燃料装载量,具备显著的膨胀负反馈,同时能够有效展平功率分布和降低堆芯压降,是有利于铅铋反应堆小型化及轻量化的燃料组件方案。  相似文献   

8.
环形燃料棒具有内外两个冷却表面,与传统棒状燃料棒相比,可充分带走燃料芯块产生的热量,有效降低燃料棒表面温度,提升反应堆安全性。通过数值模拟的方法为钠冷快堆建立稳态工况下的环形燃料棒相关数学物理模型,在保持采用绕丝定位方式的基础上,改变绕丝缠绕的位置及数量,对比分析不加绕丝、外绕、内绕、内外绕四种模型对钠冷快堆环形燃料棒温度场、流场、压力场的影响。研究表明:绕丝对流场具有充分搅混的作用,可增加冷却剂的流速,对燃料棒热量导出具有促进作用;采用内外绕时环形燃料棒整体性能最佳,环形燃料棒最高温度为768.2 K;绕丝的引入及绕丝数量的增加,均会引起压降的增加;内外绕时内外流场压降最大,但均在其安全裕度范围内。  相似文献   

9.
张毅  季松涛 《原子能科学技术》2016,50(11):1967-1971
环形燃料是一种采用双层包壳和环形芯块内外冷却的新型压水堆燃料,与传统棒状燃料相比,双包壳结构有效增加了燃料传热面积和减薄了芯块厚度,使其在事故工况下具有更好的安全性能。以秦山二期核电站作为参考电站,建立了装载环形燃料的核电站计算模型,研究在卡轴事故和弹棒事故下采用环形燃料的核电站的响应,并与相应工况下棒状燃料堆芯的计算结果比较。结果表明,与棒状燃料相比,核电站在采用环形燃料后安全裕度有明显的提高。  相似文献   

10.
核燃料元件是反应堆的核心部件,其性能影响反应堆的安全性与经济性,利用燃料元件性能分析程序开展燃料堆内稳态辐照性能分析对于燃料设计及安全评价具有重要意义。通过开发燃料温度分布、变形计算、裂变气体释放及内压等模型,结合燃料元件热工-力学多物理耦合计算分析耦合方案,基于先进并行计算方法构建了高性能并行化燃料性能分析程序Athena。利用典型商用压水堆核电站数据及同类程序计算结果进行了程序初步验证,结果表明Athena程序计算结果合理可靠。通过定义堆芯功率及热工水力边界条件,程序能够并行开展压水堆全堆芯燃料辐照性能分析,提高燃料辐照性能分析效率,是数值反应堆原型系统(CVR1.0)的重要组成。  相似文献   

11.
为研究在大型商用压水堆中采用环形燃料元件的可能性,需分析环形燃料的堆芯物理性能。本文研究了CASMO5程序计算环形燃料组件物理参数出现偏差的原因及其处理方法,分析了4组环形燃料先导组件加入秦山二期核电站平衡循环堆芯之后的堆芯物理参数。计算结果表明,装载的环形燃料先导组件对堆芯物理性能影响较小,基于CMS程序包开展环形燃料堆芯物理性能分析计算是可行的。  相似文献   

12.
一、程序移植目的1.模拟动力堆燃料元件单棒稳态运行性能供燃料元件单棒的设计和运行参考我国反应堆燃料性能程序研究起步较晚,移植美国NRC经过多年发展和校验的标准程序有利于我国动力堆燃料元件的设计、制造和运行方面的研究,对发展我国轻水堆燃料元件稳态性能程序有一定参考价值。  相似文献   

13.
This paper presents fast reactor core concept and its feasibility as a part of newly proposed compound process fuel cycle in which spent fuels of light water reactor are multi-recycled without conventional reprocessing but with only pyrochemical processing, fuel re-fabrication and reloading to the fast reactor core. Results of the core survey analyses in order to find out the feasibility of this concept, taking example for BWR MOX spent fuel of 60 GWd/t burn-up, show that four times recycling of LWR spent fuel with the burn-up of more than 300 GWd/t can be achieved without increasing MA content. Such benefits will be expected in this concept as reduction of fuel cycle cost due to simplified reprocessing procedure, reduction of environmental impacts due to reduced high level waste, efficient utilization of nuclear fuel resources, enhancement of nuclear non-proliferation, and suppression of LWR spent fuel pile-up.  相似文献   

14.
A study was conducted to evaluate the feasibility of minor actinide (MA) transmutation in light water reactors (LWR). The purpose of this work was to provide a guide for future investigations into MA transmutation in LWR. This work considered the effects of various Am/Cm separation efficiencies as well as homogeneous and heterogeneous MA bearing fuel assemblies. The MA content was introduced into the reactor as mixed oxide plus minor actinide (MOX + MA) fuel. Three Am/Cm separation efficiencies were independently considered: 99.9%, 99.0%, and 90.0%. In order to evaluate the feasibility of MA transmutation, the fuel performance of the various assemblies and core designs, as well as their respective safety related parameters, were calculated. The reduction of the burden of high level waste (HLW) motivated the investigation of MA transmutation. It was found that the MA bearing fuel assemblies and their subsequent core designs were able to perform within the safety limits required as well as achieving similar burnups to a UO2 core. The Am transmutation rates were ∼40% for the homogeneous assemblies and up to 68% for the MA targets in the heterogeneous assemblies after the described burnup, however, there was a significant amount of Cm produced during burnup. This Cm production was due to the more favorable neutron capture reaction over fission for Am in the thermal spectrum. Future work should examine the benefits of Am transmutation at the expense of large Cm production rates.  相似文献   

15.
本文对水堆燃料设计的改进作了较为全面的叙述,诸如加深燃耗、提高铀的利用率、改进燃料的运行特性、使用环形燃料芯块和使用 Gd_2O_3可燃毒物等。本文也介绍了世界上一些先进压水堆的燃料设计情况,如法国先进谱移堆的燃料设计、日本先进谱移堆的燃料设计和美国燃烧工程公司 MAP 堆的燃料设计以及中国 AC-600燃料设计的考虑。  相似文献   

16.
HTRs use a high performance particulate TRISO fuel with ceramic multi-layer coatings due to the high burn up capability and very neutronic performance. TRISO fuel because of capable of high burn up and very neutronic performance is conducted in a D-T fusion driven hybrid reactor. In this study, TRISO fuels particles are imbedded body-centered cubic (BCC) in a graphite matrix with a volume fraction of 68%. The neutronic effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on the fuel performance has been investigated for Flibe, Flinabe and Li20Sn80 coolants. The reactor operation time with the different first neutron wall loads is 24 months. Neutron transport calculations are evaluated by using XSDRNPM/SCALE 5 codes with 238 group cross section library. The effect of TRISO coated LWR spent fuel in the fuel rod used hybrid reactor on tritium breeding (TBR), energy multiplication (M), fissile fuel breeding, average burn up values are comparatively investigated. It is shown that the high burn up can be achieved with TRISO fuel in the hybrid reactor.  相似文献   

17.
环形燃料一种安全高效的新型核燃料。为对环形燃料元件冷却剂丧失事故(LOCA)下整体受压失效形式的问题进行研究,将环形电加热棒、模拟芯块和试验件组装成试验装置,在空气环境中,以环形电加热棒外加热的方式,对环形燃料元件内包壳进行了外压屈曲试验,并将试验屈曲压力与Bresse?Bryan公式计算结果和特征值屈曲数值模拟分析结果进行了对比分析。结果表明:Bresse?Bryan公式计算结果除以安全系数m=2?5得到的结果高于试验结果而不够保守,试验结果分布于特征值屈曲数值模拟分析结果的1/5?1/3之间。本文结果可为环形燃料元件安全评价及后续工程化提供基础数据。  相似文献   

18.
The irradiation swelling, creep, and thermal-stress analysis of light-water reactor (LWR) oxide (UO2) fuel elements is analysed. The analysis is based on the basic physical and mathematical assumptions and the experimental data of the fuel and cladding (or canning) materials. In the analysis, the nuclear, physical, metallurgical, and thermo-mechanical properties of the fuel and cladding materials under irradiation environment are examined carefully. The objectives of the paper are mainly (1) to formulate and carry out the irradiation swelling, irradiation creep, and thermal-stress analysis of fuel elements for LWR power reactors, and (2) to develop a computer code which will facilitate the computations for fuel element design, safety analysis, and economic optimization of the power reactors. In a general procedure of the analysis, the irradiation swelling, irradiation creep, temperature distribution, etc. in the fuel and cladding of the oxide fuel elements during the reactor in operation are studied. Some theoretical models and empirical relations (on the basis of accepted experimental data) for irradiation swelling and creep in the fuel and irradiation creep in cladding materials are postulated and developed. Some analytical and empirical relations (based on test results) for heat generation and temperature distribution in the fuel during fuel restructuring are derived. The fuel restructure is, in general, divided into the central void, columnar grain, equiaxed grain, and unaffected grain zones (or regions) after a sufficiently long period for the fuel elements to be irradiated (or operated). From these relations derived for irradiation swelling, irradiation creep, and temperature distribution in the fuel and cladding, together with the well-known strain-stress, incompressibility, compatibility, and stress equilibrium equations, the irradiation swelling, creep, and thermal-stress analysis for the LWR fuel elements can be carried out.From the analytical results obtained, a computer code, ISUNE-2 (which is in the sequence of computer code ISUNE-1 and -1A developed and used previously for liquid-metal fast breeder reactor fuel element design and safety and economic analysis), can be developed. With some reliable experimental data (measured during fuel elements in operation) as input, the computer code may predict various cases of LWR (oxide or carbide) fuel elements in operation. The general scope and resulting contribution of this paper is to provide a realistic analysis and a reliable operating LWR fuel element code for use by nuclear power utilities to predict the fuel element behavior in power reactors. The fuel element design, safety analysis, and economic optimization depend largely on the fuel element behavior in the power reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号