首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In this paper, based on the process of the fatigue crack initiation and the critical plane theory, a continuous stress parameter was proposed to quantify the driving force of the fatigue crack initiation for the fully reversed multiaxial fatigue loading. In this stress parameter, the shear stress amplitude and normal stress amplitude on the critical plane were combined with the variable coefficients which were affected by the normalized fatigue life and the loading non‐proportionality. Owing to these coefficients, for the multiaxial loadings with different non‐proportionalities, the driving force of the fatigue crack initiation during the whole life could be described. After that, a novel accumulative fatigue damage model was established for the multiaxial two‐stage step spectrum. In this model, the accumulative damage was calculated according to the variation of the proposed stress parameter on the critical plane. Considering the directionality of the multiaxial fatigue damage, for the spectrum in which the loading path was variable, the damage accumulation was carried out on the critical planes of the both loadings, and the larger one was chosen as the final accumulative fatigue damage. In order to verify the new model, up to 41 different multiaxial two‐stage step spectrum loading tests on 2024‐T4 aluminium alloy were collected. The new model, as well as other five commonly used models, was applied to calculate the accumulative fatigue damage. The final results showed that, compared with other commonly used models, the new model had the most accurate results with the smallest scatters.  相似文献   

2.
In this paper, several multiaxial fatigue damage parameters taking into account nonproportional additional hardening are reviewed. According to the way nonproportional additional hardening is considered in the model, the damage parameters are classified into 2 categories: (1) equivalent damage parameters and (2) direct damage parameters. The equivalent damage parameters usually define a nonproportional coefficient to consider nonproportional additional cyclic hardening, and make a combination of this nonproportional coefficient with stress and/or strain quantities to calculate the equivalent damage parameters. In contrast, the direct damage parameters are directly estimated from the stress and strain quantities of interest. The accuracy of 4 multiaxial fatigue damage parameters in predicting fatigue lifetime is checked against about 150 groups of experimental data for 10 different metallic materials under multiaxial fatigue loading. The results revealed that both Itoh's model, one of equivalent damage parameters, and Susmel's model, which belong to direct damage parameters, could provide a better correlation with the experimental results than others assessed in this paper. So direct damage parameters are not better than the equivalent damage parameters in predicting fatigue lifetime.  相似文献   

3.
In this paper, the growth of long fatigue cracks up to failure in aircraft components is studied. A deterministic model is presented, able to simulate the growth of fatigue through cracks located at rivet holes in lap‐joint panels. It also includes criteria to assess the link‐up of collinear adjacent cracks in a MSD scenario. To validate the model, a fatigue test campaign was carried out on riveted lap‐joint specimens in order to produce experimental crack growth and link‐up data. Accurate measurements of naturally occurred surface cracks were automatically performed by the Image Analysis technique, thus allowing the tests to run 24 h a day. The comparison between experimental tests and numerical simulations is good, thus confirming the model as a useful tool for the assessment of fatigue life of aircraft riveted joints.  相似文献   

4.
The effect of hard anodizing coated 2014‐T6 aluminium alloy test samples with dissimilar mating materials on fretting fatigue was investigated. Fretting fatigue configuration involved bridge‐type pads on the flat specimen. Bridge‐type pads were made of AISI 4140 steel. All the fretting fatigue tests were conducted under plane bending loading with a stress ratio of R=?1. Coated and uncoated specimens were compared for microhardness, surface roughness, tangential force. The specimens were tested under both plain fatigue and fretting fatigue loading at ambient temperature. Micrographs obtained from scanning electron microscope showed that hard anodizing coating had tiny cracks through the thickness of the anodized layer. The hardness of hard anodized coating was higher than that of uncoated specimens and they also exhibited lower tangential force. However, the fretted region of the hard anodizing coated specimens was rougher than that of uncoated samples and despite lower tangential forces, fatigue lives of hard anodizing coated samples were inferior to those of uncoated samples. As the hard anodizing coating had pre‐existing tiny cracks and tension residual stress, cracks propagated from the hard anodizing coating through the interface into the substrate. We conclude that these may be the main reasons for inferior fretting fatigue lives compared with uncoated samples.  相似文献   

5.
6.
Numerical investigations of low‐cycle fatigue damage parameters of a 9Cr steel have been studied and compared with the previous results in order to understand the effect of the damage parameters on predicting the damage development of the material. Using the nonlinear kinematic softening criterion, the Chaboche constitutive equation is combined with the hysteresis total stress–strain energy concept to implement damage initiation and evolution; the remaining life of the specimen can be predicted. In this paper, the cyclic softening model in conjunction with the progressive damage evolution model successfully predicted the failure times of the experimental tests. By using a novel sensitivity analysis of the damage parameters c1, c2, c3 and c4 based on the Taguchi method, the highest parameter effect has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号