首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
The drug-resistant leukemic cell lines, CEM/VLB100 and K/DAU600, are more sensitive to tumor necrosis factor alpha (TNFalpha)-mediated cytotoxicity compared with their parental cell lines, CCRF-CEM and K562 cl.6. Drug-resistant leukemic cell lines have more active mitochondrial function, which is associated with a greater susceptibility to TNFalpha-induced respiratory inhibition. TNFalpha blocked electron transfer at three sites, NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), and cytochrome c oxidase (complex IV). Respiratory rate and electron transport chain enzyme activities were significantly inhibited in the drug-resistant, TNF-sensitive cell lines. Respiratory inhibition preceded cell death by at least 5 to 8 hours. The respiratory failure was not compensated for by appropriate up-regulation of the glycolytic pathway. Increasing mitochondrial respiratory rate and enzyme activities by long-term culture with 2 mmol/L adenosine 5'-diphosphate (ADP) and Pi sensitized both drug-sensitive and drug-resistant cells to TNFalpha-induced cytolysis. Intramitochondrial free radicals generated by paraquat only had a limited and delayed effect on respiratory inhibition and cytolysis in comparison with the effect of TNFalpha. We conclude that TNFalpha-induced cytotoxicity in leukemic cells is, at least in part, mediated by inhibition of mitochondrial respiration. Free radical generation by TNFalpha may not directly lead to the observed inhibition of the mitochondrial electron transport and other mechanisms must be involved.  相似文献   

3.
Novel compounds, composed of two acridone moieties connected by a propyl or butyl spacer, were synthesized and tested as potential modulators of P-glycoprotein (P-gp)-mediated multidrug resistance. The propyl derivative 1,3-bis(9-oxoacridin-10-yl)-propane (PBA) was extremely potent and, at a concentration of 1 microM, increased steady state accumulation of vinblastine (VLB) approximately 9-fold in the multidrug-resistant cell line KB8-5. In contrast to the readily reversible effects of VRP and cyclosporin A on VLB uptake and similar to the effects of the cyclosporin analog PSC 833, this modulation by PBA was not fully reversed 6-8 hr after transfer of cells to PBA-free medium. Continuous exposure to 3 microM PBA was nontoxic and could completely reverse VLB resistance in KB8-5 cells. Consistent with its effects on VLB transport, the drug resistance-modulating effect of PSC 833 was significantly more persistent than that of VRP. However, the effect of PBA was, like that of VRP, rapidly reversed once the modulator was removed from the extracellular environment. PBA was able to compete with radiolabeled azidopine for binding to P-gp and to stimulate P-gp ATPase activity. However, both the steady state accumulation of PBA and the rate of efflux of PBA were similar in drug-sensitive KB3-1 and drug-resistant KB8-5 cells, suggesting that this compound is not efficiently transported by P-gp. These results indicate that PBA represents a new class of potent and poorly reversible synthetic modulators of P-gp-mediated VLB transport.  相似文献   

4.
5,6,7,8-Tetrahydro-N5,N10-carbonylfolic acid (LY354899) has been demonstrated to inhibit the dehydrogenase activity of C1-tetrahydrofolate synthase. This compound was only moderately antiproliferative toward CCRF-CEM lymphocytic leukemia cells in culture, but induced apoptosis after long incubation times. Slightly greater potency was observed in CEM cells adapted to grow in low folate media. Cell cycle alterations induced by LY354899 were unique relative to antifolates that inhibit either the purine or thymidine de novo biosynthetic pathways. Based on the observed changes in DNA content, we hypothesized that inhibition of the dehydrogenase resulted in two temporally distinct events: the first was a purineless-like effect and the second was a thymineless-like effect that resulted in apoptosis. To test this hypothesis, we combined LY354899 with the purine salvage metabolite, hypoxanthine. This combination resulted in an earlier and more dramatic apoptotic response, indicating that the thymineless effect had been potentiated. Biochemical analysis of ribo- and deoxyribonucleoside triphosphates confirmed that inhibition of the dehydrogenase activity initially resulted in decreased pools of deoxypurines and deoxypyrimidines, followed 16 hr later by an increase in deoxyadenosine triphosphate (dATP) and a further decrease in deoxythymidine triphosphate (dTTP). These studies demonstrate that the inhibition of the dehydrogenase activity of C1-tetrahydrofolate synthase may represent a viable target for the development of novel antifolates. The results are discussed in terms of deoxypurine and deoxypyrimidine biosynthesis.  相似文献   

5.
It has been proposed that P glycoprotein (Pgp) expression is associated with swelling-activated Cl- currents in multidrug-resistant cells. The Pgp substrate vinblastine and the modulator verapamil produced a reversible concentration-dependent block of swelling-activated Cl- currents in both a drug-sensitive cell line (MCF-7) and a Pgp-expressing derivative (BC19/3). The similarity of the results obtained in both cell lines suggests that the mechanism of block is not related to Pgp expression and supports the hypothesis that Pgp expression is not necessary for the swelling activation of Cl- currents. In contrast to the results obtained with vinblastine, two other cytoskeleton-disrupting agents, colchicine and cytochalasin D, were not able to affect the swelling-activated Cl- currents in either cell line. The data provided no evidence for the involvement of the cytoskeleton in the swelling activation of Cl- channels in these cell lines. The Cl- channel blockers, 5-nitro-2-(3-phenylpropylamino)benzoic acid and 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid, each produced a similar reversible concentration-dependent block in the swelling-activated currents in both the Pgp-expressing and nonexpressing cells. This strongly suggests that the Cl- channel(s) responsible for the swelling-dependent current in both cell lines are the same and, since MCF-7 cells do not express Pgp, that Pgp is not the channel responsible for the volume-activated Cl- currents in these cells.  相似文献   

6.
It has been shown that cytochrome c is released from mitochondria during apoptosis, activates pro-caspase CPP32 (caspase III), and induces DNA fragmentation in mixtures of cytosolic extracts and isolated nuclei. To establish whether cytochrome c can primarily induce apoptosis in intact cells, we used direct electroporation of cytochrome c into murine interleukin-3 (IL-3)-dependent cells. Electroporation of micromolar external concentrations of cytochrome c rapidly induced apoptosis (2 to 4 hours) that was concentration-dependent, did not affect mitochondrial transmembrane potential, and was independent of cell growth. Only certain isoforms of cytochrome c were apoptogenic; yeast cytochrome c and other redox proteins were inactive. Cytochrome c-induced apoptosis was dependent on heme attachment to the apo-enzyme and was completely abolished by caspase inhibitors. Nonapoptogenic isoforms of cytochrome c did not compete for apoptogenic cytochrome c. Although apoptosis induced by IL-3 withdrawal was inhibited by bcl-2 overexpression and expression of an activated MAP-kinase-kinase (MAP-KK), cytochrome c induced apoptosis in the presence of IL-3 signaling, bcl-2 over-expression, expression of activated MAP-KK, and the combined antiapoptotic action of all three. Cytochrome c also induced apoptosis in the leukemic cell line WEHI 3b. However, human HL60 and CEM cells were resistant to cytochrome c-induced apoptosis. HL60 cells did not electroporate, but CEM cells were efficiently electroporated. Our studies with IL-3-dependent cells confirm that the apoptogenic attributes of cytochrome c are identical in intact cells to those in cell extracts. We conclude that cytochrome c can be a prime initiator of apoptosis in intact growing cells and acts downstream of bcl-2 and mitochondria, but that other cells are resistant to its apoptogenic activity. The system described offers a novel, simple approach for investigating regulation of apoptosis by cytochrome c and provides a model linking growth factor signaling to metabolism, survival, and apoptosis control.  相似文献   

7.
Separate mechanisms underlying the multidrug resistant (MDR) phenotype were identified in 2 independent approaches to select tumour cells resistant to low concentrations of doxorubicin (Dox) from the sensitive T cell leukemia cell line CCRF-CEM. The CEM/A7 cell line was selected at an initial concentration of 0.005 microgram/ml of Dox and maintained at 0.07 microgram/ml. In contrast, the CEM/A5 line was selected using an initial concentration of 0.01 microgram/ml and maintained in Dox at a concentration of 0.05 microgram/ml. P-glycoprotein expression was demonstrated in the CEM/A7 line but not the CEM/A5 line. Amplification of the mdrI gene was not observed in the CEM/A7 cell line. Both cell lines showed cross-resistance to a number of structurally unrelated cytotoxic drugs including anthracyclines and etoposide (VP-16), although only the CEM/A7 line was cross resistant to Vinca alkaloids. Immunoblots of total cell lysates of the CEM/A5 line have revealed almost undetectable levels of topoisomerase II alpha and beta in this line. Cytogenetic analyses of both lines revealed numerous karyotypic abnormalities which were present in the parental cell line as well as both resistant cell lines. The CEM/A7 line also demonstrated a duplication of part of the long arm of chromosome 7 which included the region containing the mdrI gene, a finding not seen in the parental or CEM/A5 line. CEM/A5, however, demonstrated an abnormality of chromosome 7, outside the region of the mdrI gene, and it also contained a deletion of the short arm of chromosome 2. Abnormalities in this latter region of genome have been associated with non-P-glycoprotein-mediated MDR.  相似文献   

8.
A large number of multidrug resistance (MDR) modulators, termed chemosensitizers, have been identified from a variety of chemicals, but most have been proven to be clinically toxic. Low concentrations of the pleuromutilin-derived semi-synthetic antibiotic tiamulin (0.1 to 10 microM) sensitized the three highly resistant P-glycoprotein (Pgp)-overexpressing tumor cell lines P388 (murine lymphoid leukemia), AS30-D (rat hepatoma), CEM (human lymphoblastic leukemia), and the barely resistant AS30-D/S cell lines to several MDR-related anticancer drugs. Flow cytometric analysis showed that tiamulin significantly increased the intracellular accumulation of daunomycin. When compared to reference modulating agents such as verapamil and cyclosporin A, tiamulin proved to be 1.1 to 8.3 times more efficient in sensitizing the resistant cell lines. Moreover, when given i.p. (1.6 microg/mg body weight), tiamulin increased the survival rate of adriamycin-treated mice bearing the P388/ADR25 tumor line by 29%. In the presence of an anticancer drug, tiamulin inhibited both ATPase and drug transport activities of Pgp in plasma membranes from tumor cells. Tiamulin is thus a potent chemosensitizer that antagonizes the Pgp-mediated chemoresistance in many tumor cell lines expressing the MDR phenotype at different levels and displays no toxic effects on contractile tissues at active doses, therefore providing the promise for potential clinical applications.  相似文献   

9.
Multidrug resistance-associated protein (MRP) causes multidrug resistance (MDR) involving the anthracyclines and epipodophyllotoxins. Many studies show modulation of anthracycline levels and cytotoxicity in MRP-overexpressing cells, but there is limited data on the modulation of etoposide levels and cytotoxicity in MRP-overexpressing or in P-glycoprotein-expressing cells. Etoposide accumulation was 50% reduced in both the CEM/E1000 MRP-overexpressing subline and the CEM/VLB100 P-glycoprotein-expressing subline compared to the parental CEM cells, correlating with similar resistance to etoposide (200-fold) of the two sublines. For the CEM/VLB100 subline, the P-glycoprotein inhibitor SDZ PSC 833, but not verapamil, was able to increase etoposide accumulation and cytotoxicity. For the CEM/E1000 subline, neither SDZ PSC 833 nor verapamil had any effect on etoposide accumulation. However, verapamil caused a 4-fold sensitization to etoposide in this subline, along with an 80% decrease in cellular glutathione (P < 0.05). Buthionine sulfoximine (BSO), which depletes glutathione, also caused a 2.5-fold sensitization to etoposide with no effect on accumulation in the CEM/E1000 subline. In contrast, SDZ PSC 833 was able to increase daunorubicin accumulation in the CEM/E1000 subline (P < 0.05), but had no effect on daunorubicin cytotoxicity, or cellular glutathione. These results show that modulation of etoposide cytotoxicity in MRP-overexpressing cells may be through changes in glutathione metabolism rather than changes in accumulation and confirm that changes in drug accumulation are not related to drug resistance in MRP-overexpressing cells.  相似文献   

10.
To investigate the role of protein kinase C (PKC) in the regulation of multidrug resistance and P-glycoprotein (P-gp) phosphorylation, the natural isomer of sphingosine (SPH), D-erythro sphingosine (De SPH), and its three unnatural stereoisomers were synthesized. The SPH isomers showed similar potencies as inhibitors of in vitro PKC activity and phorbol binding, with IC50 values of approximately 50 microM in both assays. Treatment of multidrug-resistant MCF-7ADR cells with SPH stereoisomers increased vinblastine (VLB) accumulation up to 6-fold at 50 microM but did not alter VLB accumulation in drug-sensitive MCF-7 wild-type (WT) cells or accumulation of 5-fluorouracil in either cell line. Phorbol dibutyrate treatment of MCF-7ADR cells increased phosphorylation of P-gp, and this increase was inhibited by prior treatment with SPH stereoisomers. Treatment of MCF-7ADR cells with SPH stereoisomers decreased basal phosphorylation of the P-gp, suggesting inhibition of PKC-mediated phosphorylation of P-gp. Most drugs that are known to reverse multidrug resistance, including several PKC inhibitors, have been shown to directly interact with P-gp and inhibit drug binding. SPH stereoisomers did not inhibit specific binding of [3H] VLB to MCF-7ADR cell membranes or [3H]azidopine photoaffinity labeling of P-gp or alter P-gp ATPase activity. These results suggest that SPH isomers are not substrates of P-gp and suggest that modulation of VLB accumulation by SPH stereoisomers is associated with inhibition of PKC-mediated phosphorylation of P-gp.  相似文献   

11.
Superantigen-activated T cells can be targeted by monoclonal antibodies (mAb) to lyse MHC class II negative tumour cells. In this study we determined the susceptibility of the T-lymphoblastoid leukaemic cell line CCRF-CEM and its multidrug resistant sublines CCRF VCR100, CCRF VCR1000 and CCRF ADR5000 to lysis by monoclonal antibody-targeted and superantigen-activated T cells (superantigen-dependent cellular cytotoxicity, SDCC). A recombinant fusion protein of protein A and the superantigen Staphylococcus enterotoxin A (SEA) was used together with the mAbs anti-CD7, anti-CD38, anti-CD45RA and 4E3 (anti-P-glycoprotein) to correlate susceptibility to SDCC with expression of the MDR1-gene product. Our results demonstrated SDCC to be independent of MDR1-gene expression. This was further confirmed by blocking the function of Pgp in the leukaemic cell lines with a cyclosporine A derivative, which had no influence on SDCC. As expected, expression of the respective cell surface antigens on target cells had a strong impact on SDCC, although other factors seem to influence efficiency of SDCC as well.  相似文献   

12.
Ischemia/reperfusion causes oxidant injury in isolated cardiomyocytes without neutrophils or xanthine oxidase. Since these cells contain mitochondria, we hypothesized that the mitochondrial electron transport chain (ETC) causes this injury. To test this, we altered two conditions known to change within the mitochondria during ischemia/reperfusion-the extent of ETC redox-reduction and oxygen levels-and measured the resulting oxidant generation and injury. Specifically, we exposed cardiomyocytes for 1 h to the mitochondrial ETC inhibitors cyanide, antimycin, and rotenone and measured oxidant generation, using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH, sensitive to H2O2 and hydroxyl radicals). Inhibitors causing more extensive redox-reduction of the ETC (cyanide or antimycin) generated more oxidants than did partial ETC reduction with the inhibitor rotenone (10-fold v five-fold increases in DCFH oxidation). In addition, the DCFH oxidation caused by cyanide could be completely attenuated by the antioxidants 2-mercaptopropionylglycine (MPG) and 1,10 phenanthroline (PHEN). Finally, we tested the relevance of this oxidant generation on cell survival and contraction, with and without antioxidant interventions. Cell viability and contraction after 3-h recovery from cyanide exposure was significantly improved by either the addition of antioxidants, or by the "antioxidant" strategy of lowering O2 levels (i.e. from 150 to 3 tau) during the cyanide exposure (13.8% death with hypoxic cyanide v 48.6% cell death with normoxic cyanide). Collectively, these findings demonstrate that mitochondrial ETC carriers can cause significant oxidant injury, greatest when fully redox-reduced and exposed to oxygen, conditions known to occur in the transition from ischemia to reperfusion.  相似文献   

13.
1. Effects of the synthetic vitamin D analogue EB1089 on indices of apoptosis in cultured human breast cancer cells and in nitrosomethylurea-induced rat mammary tumours in vivo were investigated. 2. At a dose of 0.5 microg kg(-1) body weight, EB1089 caused significant inhibition of tumour progression over the 28 day treatment period in the absence of a significant increase in serum calcium concentration. Higher doses of EB1089 (1 and 2.5 microg kg(-1)) produced substantial regression of the experimental tumours which was accompanied by a striking change in the histological appearance of tumours consistent with induction of tumour cell death. 3. Fragmentation of genomic DNA is a characteristic feature of apoptosis. With the terminal transferase (TdT) assay, 3' DNA breaks indicative of DNA fragmentation were detected histochemically in mammary tumour cells from animals treated with EB1089 (2.5 microg kg(-1)) for 14 days. 4. Effects of the vitamin D analogue on induction of apoptosis were examined in vitro using the MCF-7 human breast cancer cell line. Using the TUNEL method, positive nuclear staining indicative of DNA fragmentation was detected in cells treated for 4 days with 10 nM EB1089. Apoptosis was also quantitated using a cell death ELISA which revealed a time and dose dependent induction of apoptosis by EB1089. 5. The effects of EB1089 on the expression of two oncoproteins which may regulate apoptosis, bcl-2 and bax were examined by Western analysis. In MCF-7 cell cultures treated with 1,25(OH)2D3 or EB1089 (1 x 10(-8) M), bcl-2 protein levels were decreased in a time-dependent manner relative to control levels. In contrast bax protein was not markedly regulated by these compounds. Densitometric analyses indicate that the vitamin D compounds lower the bcl-2/bax ratio favouring increased susceptibility of MCF-7 cells to undergo apoptosis. 6. These results suggest that the synthetic vitamin D analogue EB1089 may promote tumour regression by inducing active cell death.  相似文献   

14.
Large deletions of exons 2 and 3 of the hprt gene are the most common type of hprt mutation in lymphocytes of newborn infants, and their frequency increases in cultured human T-lymphoid cells as a result of exposure to etoposide. Sequenced PCR products for these deletions are consistent with a V(D)J recombinase-mediated mechanism underlying their genesis. Herein, we describe the isolation and characterization of an etoposide-induced mutant CEM cell line that is clonal for a V(D)J recombinase-mediated exon 2 + 3 deletion. Human CCRF-CEM cells were exposed to 5 muM etoposide for 4 h, selected in 6-thioguanine, and an exon 2 + 3 deletion mutant was isolated through serial limiting dilution, using a PCR-based assay for detection of the exon 2 + 3 deletion. Untreated CEM cells and cells treated with 6-thioguanine alone were similarly subcultured. The exon 2 + 3 deletion-containing line was termed SJCEM808 and had a slightly longer doubling time than the control lines, tended to clump in suspension, and was characterized by cell membrane blebbing. Compared to the parent line, SJCEM808 had similar cytogenetic abnormalities, lower CD2, CD1, and CD10 expression, and negligible RAG-1 expression. However, RAG-1 expression was down-regulated in some untreated parental subclones following similar subculturing. The sequence of the exon 2 + 3 deletion mutation exhibited nucleotide insertions, and the breakpoints were adjacent to heptamer signal recognition sequences in intact hprt, consistent with a V(D)J recombinase-mediated mechanism underlying its genesis. There were no MLL gene or interlocus T-cell receptor (TCR) rearrangements. These results indicate that non-homologous recombination following etoposide treatment is neither necessarily accompanied by other large DNA rearrangements nor simply a pre-lethal event, and this cell line may serve as a useful tool for studying illegitimate V(D)J recombinase-mediated deletions.  相似文献   

15.
The comet test is a reported method for measuring DNA damage in individual mammalian cells. In the present report, the ability of this test to detect multidrug resistance (MDR) was evaluated. For this purpose, two human leukemia, well-characterized parental cell lines, HL60 and CEM, and their derived multidrug-resistant cells, HL60/DNR and CEM/VBL, were cultured with or without different anti-cancer agents. To evaluate the comet test, two DNA-damaging agents were used: daunorubicin (DNR), which is involved in MDR, and ambamustine (AMBA), which is independent from MDR. Moreover, in order to evaluate the specificity of the comet test, the activity of vinblastine (VBL), an MDR-related, DNA-independent anti-cancer drug, was also tested. Finally, the specificity of the comet test in detecting MDR was confirmed by culturing parental or resistant cells with DNR with or without the revertant agent verapamil (VER). Results confirm that the comet test is able to predict cellular chemoresistance when DNA damaging agents are tested. Finally, experiments on the role of the comet test in evaluating certain aspects of DNA repair are discussed.  相似文献   

16.
We have synthesized a new compound, 3-bromoacetylamino benzoylurea (3-BAABU), which showed strong cancericidal activity by inducing irreversible mitotic arrest and subsequently apoptosis in human T cell leukemic cells (CEM), human biphenotypic leukemic cells (SP), a human prostate cancer cell line (PC-3), murine melanoma cells (B-16), and murine lymphoma/leukemia cells (EL4) in vitro with an ID50 in the range of 0.013-0.07 microg/ml (0.04-0.22 microM). Treatment of tumor cells for 12-24 h with 3-BAABU resulted in mitotic arrest at prometaphase/metaphase/anaphase, with separation and dispersion of chromosomes and with the absence of mitotic spindle apparatus in cytoplasm. Treatment with 3-BAABU had no cytotoxic and mitotic blocking effect in normal human lymphocytes, proliferating fibroblast cells (3T3), or proliferating myocardial cells (MOT). Cell cycle analyses showed that most treated leukemic cells accumulated at M phase 12 h after treatment. By the end of 48 h of treatment, the cells underwent apoptosis with DNA fragmentation. 3-BAABU inhibited the assembly of microtubules from tubulin but did not interfere with the disassembly of microtubules. The presence and the position of bromine and urea groups on the benzoic ring are the determining factors for its inhibition of microtubule assembly. Replacing bromine with chlorine yielded much less mitotic blocking activity and increased the ID50 40-fold. Substitution of the urea group with ethyl ester abrogated the activity of blocking mitosis but induced apoptosis. Moving the bromoacetylamino group from the 3-position to the 4-position removed blocking activity for mitosis but induced necrosis. These results suggest that 3-BAABU possesses a unique and functional structure and is a potential agent for cancer chemotherapy.  相似文献   

17.
Viruses have evolved different strategies to interfere with host cell apoptosis. Herpesvirus saimiri (HVS) and other lymphotropic herpesviruses code for proteins that are homologous to the cellular antiapoptotic Bcl-2. In this study HVS-Bcl-2 was stably expressed in the human leukemia cell line Jurkat and in the murine T-cell hybridoma DO to assess its antiapoptotic spectrum and to gain further insight into its mode of action. HVS- Bcl-2 prevented apoptosis that occurs as a result of a disturbance of intracellular homeostasis by, for example, DNA damage or menadione, which gives rise to oxygen radicals. In Jurkat cells, HVS-Bcl-2 also inhibited apoptosis mediated by the death receptor CD95. In DO cells, HVS-Bcl-2 did not interfere with CD95-mediated apoptosis but blocked dexamethasone-induced cell death. Mitochondrial damage is a central coordinating event in apoptosis induced by different stimuli. To assess the integrity of mitochondria, we used rhodamine 123, which is released upon disturbance of the mitochondrial membrane potential, and determined the release of cytochrome c into the cytosol. Both signs of mitochondrial damage were prevented by HVS-Bcl-2. This viral protein also inhibited the generation of caspase-3-like DEVDase activity and blocked the cleavage of poly(ADP-ribose) polymerase, a natural substrate of caspase-3-like proteases. In conclusion, HVS-Bcl-2 protects against a great variety of apoptotic stimuli, stabilizes mitochondria, and acts upstream of the generation of caspase-3-like activity.  相似文献   

18.
Synthesis of poly(gamma-glutamyl) metabolites of many antifolates, such as methotrexate (MTX), by folylpolyglutamate synthetase (FPGS) is often essential to their cytotoxic activity. FPGS expression in the MTX-sensitive human T-lymphoblastic leukemia cell line CCRF-CEM and a number of MTX-resistant sublines was previously investigated at the DNA, RNA, and activity levels. Using an FPGS peptide deduced from its cDNA sequence, a rabbit polyclonal antibody to FPGS has now been elicited, immunoaffinity purified, and used to quantitate FPGS protein expression by chemiluminescent Western immunoblot analysis. The antibody was used to determine the half-life of human FPGS protein (3.7 +/- 1.1 h) in parental CCRF-CEM cells. A subline resistant to MTX as a result of amplified dihydrofolate reductase expression shows no change in FPGS protein or activity relative to CCRF-CEM. An MTX transport-defective line, however, displays both higher FPGS protein and activity levels. For several sublines in which the only apparent mechanism of MTX resistance is decreased FPGS activity, the FPGS protein level is decreased proportionally. However, we previously showed that these sublines have the same gene copy number, restriction map, and mRNA size and levels as the parent. Evidently, in these MTX-resistant sublines the mRNA is poorly translated and/or the protein turns over more rapidly.  相似文献   

19.
The four title compounds (not hitherto reported) were synthesized from 3-aminobenzoic acid through its trifluoroacetic acid-acid chloride derivative, reaction with urea and aminolytic deprotection to yield 3-aminobenzoylurea, followed by unconventional haloacetylation. Three key factors were found essential for antitumor activity: (i) the cytotoxic nature of the halogen: I > Br > Cl > F (ID90 0.014->10 microM); (ii) the position of the halogen: only the 3-position (meta) expressed relevant activity; and (iii) the presence of the urea group (1-position). The selectivity of the bromo and iodo compounds were higher than those of vinblastine and paclitaxel in terms of cytotoxicity (ID50 ratios in nonmalignant myocardial fibroblasts and CEM leukemia cells) and therapeutic indices (P338 leukemia bearing mice). Relevant mechanisms of bioactivity were mitotic arrest and apoptosis. Complete inhibition of microtubule assembly occurred in cell-free systems (at 2.8 versus 2.1 microM for vinblastine); in contrast to paclitaxel, the target compounds did not interfere with microtubule disassembly. The strong cancericidal and antimicrotubular activities of the bromine and iodine compounds justify further exploration of their potential in antineoplastic chemotherapy.  相似文献   

20.
Several clinically active anticancer drugs are known to interfere with DNA topoisomerase II activity. However, the importance of the individual alpha (170 kDa) and beta (180 kDa) isozymes as targets of topoisomerase II-active drugs is not clear. To address this question, human CCRF-CEM leukemia cells were incubated with bromodeoxyuridine, and either the nascent DNA or bulk DNA not undergoing replication was purified by immunoprecipitation with an anti-bromodeoxyuridine antibody. The topoisomerase II isozymes that coprecipitated with either the nascent DNA or bulk DNA were analyzed by Western blotting. The alpha isozyme formed complexes with nascent DNA in cells pretreated with either VM-26 or mitoxantrone, while the beta isozyme was only bound to bulk DNA. At moderately cytotoxic concentrations, VM-26 enhanced the binding of topoisomerase II alpha to nascent DNA at least 5.2-fold compared to bulk DNA. However, in VM-26 resistant CEM/VM-1 cells incubated with equitoxic concentrations of VM-26, topoisomerase II alpha complex formation with nascent DNA was decreased at least 5.5-fold compared to bulk DNA. Drug-induced binding of topoisomerase II beta with bulk DNA in CEM/VM-1 cells did not correlate with cytotoxicity. Collectively, these results indicate that the formation of VM-26 stabilized complexes of topoisomerase II alpha with nascent DNA are critical to the development of cytotoxicity, and that resistance of CEM/VM-1 cells to VM-26 is related to impaired formation of these complexes. The results also provide indirect evidence that topoisomerase II alpha is involved in DNA, replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号