首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review considers the magmatic processes in the Carpathian–Pannonian Region (CPR) from Early Miocene to Recent times, as well as the contemporaneous magmatism at its southern boundary in the Dinaride and Balkans regions. This geodynamic system was controlled by the Cretaceous to Neogene subduction and collision of Africa with Eurasia, especially by Adria that generated the Alps to the north, the Dinaride–Hellenide belt to the east and caused extrusion, collision and inversion tectonics in the CPR. This long-lived subduction system supplied the mantle lithosphere with various subduction components. The CPR contains magmatic rocks of highly diverse compositions (calc-alkaline, K-alkalic, ultrapotassic and Na-alkalic), all generated in response to complex post-collisional tectonic processes. These processes formed extensional basins in response to an interplay of compression and extension within two microplates: ALCAPA and Tisza–Dacia. Competition between the different tectonic processes at both local and regional scales caused variations in the associated magmatism, mainly as a result of extension and differences in the rheological properties and composition of the lithosphere. Extension led to disintegration of the microplates that finally developed into two basin systems: the Pannonian and Transylvanian basins. The southern border of the CPR is edged by the Adria microplate via Sava and Vardar zones that acted as regional transcurrent tectonic areas during Miocene–Recent times.Major, trace element and isotopic data of post-Early Miocene magmatic rocks from the CPR suggest that subduction components were preserved in the lithospheric mantle after the Cretaceous–Miocene subduction and were reactivated especially by extensional tectonic processes that allowed uprise of the asthenosphere. Changes in the composition of the mantle through time support geodynamic scenarios of post-collision and extension processes linked to the evolution of the main blocks and their boundary relations. Weak lithospheric blocks (i.e. ALCAPA and western Tisza) generated the Pannonian basin and the adjacent Styrian, Transdanubian and Z?rand basins which show high rates of vertical movement accompanied by a range of magmatic compositions. Strong lithospheric blocks (i.e. Dacia) were only marginally deformed, where strike–slip faulting was associated with magmatism and extension. At the boundary of Adria and Tisza–Dacia strike–slip tectonics and core complex extension were associated with small volume Miocene magmatism in narrow extensional sedimentary basins or granitoids in core-complex detachment systems along older suture zones (Sava and Vardar) accommodating the extension in the Pannonian basin and afterward Pliocene–Quaternary inversion. Magmas of various compositions appear to have acted as lubricants in a range of tectonic processes.  相似文献   

2.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

3.
The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.  相似文献   

4.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

5.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   

6.
广东沿海地区基性岩脉地球化学及成因   总被引:4,自引:1,他引:3  
曹建劲  胡瑞忠  谢桂青  刘燊 《岩石学报》2009,25(4):984-1000
广东沿海地区基性岩脉的成岩年龄是146~54 Ma,主要形成于白垩纪,次为侏罗纪和第三纪。可将工作区基性岩脉的形成时代分为5期:第一期146Ma,第二期138~132Ma,第三期112~105Ma,第四期99~82Ma,第五期75~54Ma。根据K2O/Na2O比值和K2O含量,以及不相容元素分配模式的“Nb-Ta”异常,可以划分出两类基性岩脉。第一类K2O/Na2O比值<0.5和K2O含量<1.3%,在微量元素MORB标准化图解中具有弱的“Nb-Ta”负异常。第二类K2O/Na2O比值>0.5和K2O含量>1.3%,在微量元素MORB标准化图解中具有显著的“Nb-Ta”负异常。在K2O-SiO2图解中,第一类基性岩脉样品落入中钾岩石范围,第二类基性岩脉样品落入高钾岩石或钾玄岩范围。基性岩脉分布的重要特点是中钾基性岩脉分布于本区北部上地幔拗陷区,而高钾基性岩脉分布于本区南部地幔隆起区或斜坡区。两类基性岩脉有着不同的岩浆来源。在本区北部,软流圈物质入侵和熔蚀Ⅰ型富集地幔混合形成中钾基性岩脉,随着时代的由老至新和熔蚀作用的不断进行,岩浆中Ⅰ型富集地幔成分增加。晚期,岩浆活动向连平、新丰一带迁移。在本区南部,软流圈物质入侵并熔蚀Ⅱ型富集地幔,形成具有软流圈物质和Ⅱ型富集地幔混合特征的高钾基性岩脉。随着熔蚀作用的不断进行,岩浆中Ⅱ型富集地幔成分增加,晚期基性岩浆活动向三水裂谷、南澳裂谷迁移。  相似文献   

7.
The Naga Hills Ophiolite(NHO) represents one of the fragments of Tethyan oceanic crust in the Himalayan Orogenic system which is exposed in the Phek and Kiphire districts of Nagaland, India. The NHO is composed of partially serpentinized dunite, peridotite, gabbro, basalt, minor plagiogranite,diorite dyke and marine sediments. The basalts are mainly composed of fine grained plagioclase feldspar, clinopyroxene and orthopyroxene and show quenching and variolitic textures. The gabbros are characterized by medium to coarse grained plagioclase, orthopyroxene and clinopyroxene with ophitic to sub-ophitic textures. The ultramafic cumulates are represented by olivine, Cpx and Opx.Geochemically, the basalts and gabbros are sub-alkaline to alkaline and show tholeiitic features.The basalts are characterized by 44.1-45.6 wt.% of SiO_2 with 28-38 of Mg#, and the gabbros by38.7-43.7 wt.% of SiO_2, and 26-79 of Mg#. The ultramafic rocks are characterized by 37.4-52.2 wt.% of SiO_2, and 80-88 of Mg#. In multi-element diagrams(spidergrams) both basalts and gabbros show fractionated trends with strong negative anomalies of Zr. Nb. Sr and a gentle negative anomaly of P.However, the rare earth element(REE) plots of the basalts and gabbros show two distinct patterns. The first pattern, represented by light REE(LREE) depletion, suggests N-MORB features and can be interpreted as a signature of Paleo-Tethyan oceanic crust. The second pattern, represented by LREE enrichment with negligible negative Eu anomaly, conforms to E-MORB, and may be related to an arc tectonic setting. In V vs. Ti/1000, Cr vs. Y and AFM diagrams, the basalts and gabbros plot within Island Arc Tholeiite(IAT) and MORB fields suggesting both ridge and arc related settings. The ultramafic rocks exhibit two distinct patterns both in spidergrams and in REE plots. In the spidergram, one group displays highly enriched pattern, whereas the other group shows near flat pattern compared to primordial mantle. In the REE plot, one group displays steeper slopes [(La/Yb)N = 4.340-4.341], whereas the other displays moderate to flat slopes [(La/Yb)N = 0.97-1.67] and negative Eu-anomalies. Our study suggests that the ultramafic rocks represent two possible mantle sources(fertile and refractory).  相似文献   

8.
The East Anatolian Accretionary Complex (EAAC) comprises an ideal example of post-collisional volcanism within the Africa-Eurasia collision zone. The Miocene mafic Tunceli Volcanics, as a part of this post-collisional volcanic system, are located in the western termination of EAAC. The mafic Tunceli Volcanics are characterized by mildly alkaline and tholeiitic basalts, in which olivine, clinopyroxene and plagioclase characterize the main mineralogy. The role of fractional crystallization (FC) and assimilation combined with fractional crystallization (AFC) processes appear to be negligible in the petrogenesis of the primitive mafic Tunceli Volcanics. Relative enrichment in large ion lithophile elements (LILE), Th and La over high field strength elements (HFSE) and heavy rare earth elements (HREE) suggest contribution from a metasomatized mantle source. The wide range of ratios displayed by these elements also calls for some asthenospheric input for the genesis of these volcanics. The metasomatizing agents can be attributed to a past subduction event, probably during the closure of Neotethys. Considering also the geophysical constraints, which limits the lithospheric thickness to about 70–75 km around the region, a melt mixing between lithospheric and asthenospheric melts generated at different depths appear to be an important process in the petrogenesis of these lavas. The combined geochemical and geophysical data, therefore, necessitate a geodynamic model with some remnant lithospheric mantle underlying the Eastern Anatolian region.  相似文献   

9.
敦煌三危山地区白垩纪OIB型基性岩墙的特征及地质意义   总被引:1,自引:3,他引:1  
本文首次报道甘肃敦煌三危山地区早白垩世玄武质岩浆活动的记录。在三危山附近,基性岩墙侵入于敦煌群TTG和表壳岩大理岩和片岩中。全岩的K-Ar年龄为136.00±11.56Ma到99.11±6.35Ma,形成时代属于早白垩世。基性岩墙SiO2含量变化范围较小,集中在47.95%~50.65%之间,以富TiO2 (2.07%~2.35%,平均为2.21%)、MgO(6.03 %~6.51%,平均为6.32%)、贫K2O(<1.29%),Na2O>K2O, Mg#值中等且比较稳定(48.9~53.1,平均为51.7)为特征。基性岩相容元素含量相对较低,Ni含量变化相对较小,分布在112.7×10-6~182.7×10-6之间。而V含量变化较大,介于184×10-6~267×10-6之间,表明岩浆早期可能发生了一定的以橄榄石和单斜辉石为主的分离结晶作用。基性岩富集LREE((La/Yb)N =3.97~4.66)和LILE,无Eu负异常,较高的Fe/Mn比值等,具有与洋岛玄武岩(OIB)相似的特征。微量元素比值等特征表明其来源与富集地幔关系密切,玄武质岩浆的形成可能与岩石圈的减薄和软流圈的上涌有关。  相似文献   

10.
Fifteen zircons separated from a mafic dyke in the Chinese Altai give a concordant age population with a weighted mean 206Pb/238U age of 375.5 ± 4.8 Ma, suggesting a Devonian emplacement. On the basis of their mineralogical compositions and textures, the coeval dykes can be divided into gabbroic and doleritic types. They are both sub-alkaline, tholeiitic, characterized by similarly low SiO2 contents (45.2–52.7 wt.%) and total alkaline (K2O + Na2O = 0.99–4.93 wt.%). Rare earth element patterns of the gabbroic dykes are similar to N-MORB (La/YbN = 0.86–1.1), together with their high εNd(t) values (+ 7.6 to + 8.1), indicating that their precursor magma was mainly derived from a N-MORB-type depleted asthenospheric mantle. While the REE patterns of the doleritic dykes resemble that of E-MORB (La/YbN = 1.12–2.28), enriched in LILEs and strongly depleted in HFSEs, with relative low εNd(t) values (+ 3.4 to + 5.4) and high initial 87Sr/86Sr ratios (0.7057–0.7060). The zircon Hf isotopic analysis of the doleritic dykes give εHf(t) values from + 10.7 to + 13.8. These signatures suggest that a depleted mantle wedge metasomatized by slab-derived fluids and/or melts was possibly involved in the generation of the doleritic magma. The refractory peridotite may have been melted with variable degrees caused by upwelling of the hot asthenosphere. The petrogenesis of the mafic dykes suggest a high heat flux as a result of upwelling of the hot asthenosphere and the contrast geochemical signatures can be interpreted by a ridge subduction, which could be an important tectonic control in the accretionary process of the Chinese Altai.  相似文献   

11.
Linear domains of deformed alkaline rocks and carbonatites have recently been identified as representing sites of ancient suture zones. In peninsular India, the western margin of the Proterozoic Eastern Ghats Belt (EGB) is characterized by a series of alkaline plutons that are aligned close to the contact with the Archaean Craton. Most of the complexes were deformed and metamorphosed during a subsequent orogenic event. Unlike other plutons in the belt, the alkaline complex at Koraput reportedly escaped deformation and granulite facies metamorphism forming an anomalous entity within the zone. Multiply-deformed country rocks hosting this complex underwent syn-D1CR granulite facies metamorphism followed by D2CR thrusting, with pervasive shearing along a NE-SW trending foliation. A second granulite facies event followed localized D3CR shearing. Within the Koraput Complex, strain partitioning was responsible for preserving igneous textures in the gabbroic core, but aligned magmatic amphibole needles and plagioclase laths occasionally define a S1AC fabric. Along the margins, S1AC is rotated parallel to a NE-trending, east-dipping S2AC fabric in the gabbro, fringing syenodiorite and nepheline syenite bands. Locally, D3AC shearing follows D2AC deformation; S2AC and S3AC parallel S2CR and S3CR in the country rocks. High-grade metamorphism represented by recrystallization of amphibole and plagioclase, and breakdown of amphibole and biotite to garnet, pyroxene and K-feldspar in the complex follows D3AC. Unlike earlier reports, therefore, the Koraput body is also deformed and metamorphosed. The aligned alkaline complexes in the EGB probably represent deformed alkaline rocks and carbonatites formed by rifting related to an earlier episode of continental break-up that were deformed during subsequent juxtaposition of the EGB with the Archaean Craton. This supports the contention that the western margin of the EGB and its contact with the Archaean Craton is a suture zone related to the Indo-Antarctica collision event.  相似文献   

12.
The assembly of Late Neoproterozoice Cambrian supercontinent Gondwana involved prolonged subduction and accretion generating arc magmatic and accretionary complexes, culminating in collision and formation of high grade metamorphic orogens. Here we report evidence for mafic magmatism associated with post-collisional extension from a suite of gabbroic rocks in the Trivandrum Block of southern Indian Gondwana fragment. Our petrological and geochemical data on these gabbroic suite show that they are analogous to high Fe tholeiitic basalts with evolution of the parental melts dominantly controlled by fractional crystallization. They display enrichment of LILE and LREE and depletion of HFSE with negative anomalies at Zre Hf and Ti corresponding to subduction zone magmatic regime. The tectonic affinity of the gabbros coupled with their geochemical features endorse a heterogeneous mantle source with collective melt contributions from sub-slab asthenospheric mantle upwelling through slab break-off and arc-related metasomatized mantle wedge, with magma emplacement in subduction to post-collisional intraplate settings. The high Nb contents and positive Nbe Ta anomalies of the rocks are attributed to inflow of asthenospheric melts containing ancient recycled subducted slab components and/or fusion of subducted slab materials owing to upwelling of hot asthenosphere. Zircon grains from the gabbros show magmatic crystallization texture with low U and Pb content. The LA-ICPMS analyses show 206 Pb/238 U mean ages in the range of 507-494 Ma suggesting Cambrian mafic magmatism. The post-collisional mafic magmatism identified in our study provides new insights into mantle dynamics during the waning stage of the birth of a supercontinent.  相似文献   

13.
We present a first overview of the synplutonic mafic dykes (mafic injections) from the 2.56–2.52 Ga calcalkaline to potassic plutons in the Eastern Dharwar Craton (EDC). The host plutons comprise voluminous intrusive facies (dark grey clinopyroxene-amphibole rich monzodiorite and quartz monzonite, pinkish grey porphyritic monzogranite and grey granodiorite) located in the central part of individual pluton, whilst subordinate anatectic facies (light grey and pink granite) confined to the periphery. The enclaves found in the plutons include highly angular screens of xenoliths of the basement, rounded to pillowed mafic magmatic enclaves (MME) and most spectacular synplutonic mafic dykes. The similar textures of MME and adjoining synplutonic mafic dykes together with their spatial association and occasional transition of MME to dismembered synplutonic mafic dykes imply a genetic link between them. The synplutonic dykes occur in varying dimension ranging from a few centimeter width upto 200 meters width and are generally dismembered or disrupted and rarely continuous. Necking of dyke along its length and back veining of more leucocratic variant of the host is common feature. They show lobate as well as sharp contacts with chilled margins suggesting their injection during different stages of crystallization of host plutons in magma chamber. Local interaction, mixing and mingling processes are documented in all the studied crustal corridors in the EDC. The observed mixing, mingling, partial hybridization, MME and emplacement of synplutonic mafic dykes can be explained by four stage processes: (1) Mafic magma injected during very early stage of crystallization of host felsic magma, mixing of mafic and felsic host magma results in hybridization with occasional MME; (2) Mafic magma introduced slightly later, the viscosities of two magmas may be different and permit only mingling where by each component retain their identity; (3) When mafic magma injected into crystallizing granitic host magma with significant crystal content, the mafic magma is channeled into early fractures and form dismembered synplutonic mafic dykes and (4) Mafic injections enter into largely crystallized (>80% crystals) granitic host results in continuous dykes with sharp contacts. The origin of mafic magmas may be related to development of fractures to mantle depth during crystallization of host magmas which results in the decompression melting of mantle source. The resultant hot mafic melts with low viscosity rise rapidly into the crystallizing host magma chamber where they interact depending upon the crystallinity and viscosity of the host. These hot mafic injections locally cause reversal of crystallization of the felsic host and induce melting and resultant melts in turn penetrate the crystallizing mafic body as back veining. Field chronology indicates injection of mafic magmas is synchronous with emplacement of anatectic melts and slightly predates the 2.5 Ga metamorphic event which affected the whole Archaean crust. The injection of mafic magmas into the crystallizing host plutons forms the terminal Archaean magmatic event and spatially associated with reworking and cratonization of Archaean crust in the EDC.  相似文献   

14.
We present a summary of late Paleoproterozoic to Neoproterozoic mafic magmatism in the Siberian craton, including recently published U–Pb and 40Ar–39Ar dates. These new precise ages suggest that at least some of the previously published K–Ar ages of Siberian mafic bodies should be ignored. The time–space geochronological chart, or the ‘barcode’ of mafic magmatic events shows significant differences between northern and southern Siberia. Both are characterized by ∼1900–1700 Ma magmatic events, but then there was an almost 1 Ga mafic magmatic ‘pause’ in south Siberia until ∼800 Ma. Meanwhile there are indications of multiple mafic magmatic events in North Siberia (Anabar shield and Olenek uplift) between ∼1600 and 1000 Ma. A series of magmatic events probably related to the breakup of Rodinia occurred in southern Siberia after ∼800 Ma. So far, there are no indications of late Neoproterozoic mafic magmatism in North Siberia. Ca. 1000–950 Ma mafic sills were reported from Meso- to Neo-Proterozoic sedimentary successions in the Sette-Daban area on the east side of the Siberian craton, but their tectonic setting is debated. Recent Ar–Ar dates of ∼1750 Ma for NW-trending dykes in the Aldan and Anabar shields, together with similar-age NNE-trending Baikal uplift dykes in south-eastern Siberia suggest the existence of a giant radial dyke swarm possibly related to a mantle plume centred in the Vilyui River area.  相似文献   

15.
Evidence of mafic and ultramafic magmatism exists in many parts of the Dharwar craton which is divided into two blocks, the West Dharwar Craton (WDC) and the East Dharwar Craton (EDC). The mafic-ultramafic rocks occur in supracrustal/greenstone belts and in numerous enclaves and slivers in the WDC. The oldest recorded maficultramafic rocks, which are mainly komatiitic in nature, are preserved in the Sargur Group which is more than 3.3–3.4 Ga old, the youngest being manifested by 63–76 Ma old mafic dyke magmatism, possibly related to Deccan volcanism. In the Sargur Group, ultramafics rocks greatly dominate over mafic lithological units. Both extrusive and intrusive varieties, the latter in the form of differentiated layered complexes, occur. Mafic volcanics exists in all the greenstone belts of the eastern block and in the Bababudan and Western Ghats belts of the western block. In addition to the Sargur Group where stratigraphic sequences are unclear, mafic magmatism is recorded in three different formations of the Bababudan Group and two sub-divisions of the Shimoga and Chitradurga Groups where basaltic flows are conspicuous. In the well studied greenstone belts of Kolar and Hutti in the EDC, three to four different Formations of mafic volcanic rocks have been mapped. Isotopic dating has indicated that while mafic magmatism in the greenstone belts of the EDC covers only a short time span of between 2.65 to 2.75 Ga, those in the Dharwar Supergroup of the WDC cover a much longer time span from 3.35 to 2.5 Ga. Mafic dyke magmatism has taken place repeatedly from 2.45 Ga to about 1.0 Ga, but, the peak of emplacement was between 1.8 and 1.4 Ga when the densely developed swarms on the western and south western portions of the Cuddapah Basin and in the central part of Karnataka, were intruded. Emplacement of potassic ultramafic magma in the form of kimberlite-lamproite which is confined to the EDC, is a later magmatic event that took place between 1.4 Ga and 0.8 Ga. From a mineralization perspective, mafic magmatism of the supracrustal groups of the WDC and the greenstone belts of the EDC are the most important. V-Ti-magnetite bands constitute the most common deposit type recorded in the mafic-ultramafic complexes of the Sargur Group with commercially exploitable chromite deposits occurring in a number of belts. PGE mineralization of possible commercial value has so far been recorded in a single mafic-ultramafic complex, while copper-nickel mineralization occurs at certain localities in the Sargur and Chitradurga Groups. Gold mineralization hosted by mafic (occasionally ultramafic) rocks has been noted in many of the old workings located in supracrustal groups of rocks in the WDC and in the greenstone belts of EDC. Economically exploitable mineralization, however, occurs mainly in the greenstone belts of the Kolar, Ramagiri-Penkacherla and Hutti-Maski and along the eastern margin of the Chitradurga belt, where it is associated with a major N-S striking thrust zone separating the WDC from the EDC. Gold deposits of the eastern greenstone belts are comparable to those of the younger greenstone belts of Canada, Zimbabwe and Australia where the mineralization is associated with quartz carbonate veins often in iron-rich metabasic rocks. The gold was emplaced as hydrothermal fluids, derived from early komatiitic and tholeiitic magmas, and injected into suitable dilatent structures. The other common type of mineralization associated with the ultramafic rocks of the Sargur Group and supracrustal belts, particularly of the WDC, are asbestos and soapstone, related to autometamorphism/metasomatism. Ruby/sapphire deposits occur in places at the contacts of ultramafic rocks with the Peninsular Gneiss, and are related to contact metamorphism and metasomatism. Mineable magnesite deposits related to low-temperature hydrothermal/lateritic alteration exist in the zone of weathering, particularly in the more olivine-rich rocks. Recent spurt in diamond exploration is offering promise of discovering economically workable diamondiferous kimberlite/lamproite intrusions in the EDC.  相似文献   

16.
Several plutonic alkaline complexes have been reported from the high-grade Eastern Ghats belt, India and these are thought to have been derived from the mantle. The field features of the syenite complex around Rairakhol in Orissa indicate progressive deformation during emplacement and could be related to the latest deformation/folding in the host granulitic country rocks. Presence of some mafic granulite xenoliths could suggest a crustal source for this syenite complex.Negative epsilon value is a strong indication of crustal source. The long crustal residence ages and 143Nd/144Nd values less than 0.5120, definitely indicate a crustal source.  相似文献   

17.
The tectonic transition from Prototethys to Paleotethys orogeny in the East Kunlun orogenic belt is not completely clear, and is a major unresolved geologic issue in Northern Tibet Plateau. Here, we present zircon geochronology, whole-rock elemental and zircon Hf isotopic geochemistry for newly discovered mafic dykes in the East Kunlun orogenic belt, to provide constraints on this issue. The studied mafic dykes are hornblende gabbros, consisting of hornblende (60–65 vol.%), plagioclase (15–25 vol.%) and augite and biotite (0–5 vol.%). LA–ICP–MS zircon U–Pb dating shows that these mafic dykes were emplaced at about 393 Ma. All the mafic dykes are characterized by high contents of CaO (8.82–11.48 wt.%), MgO (9.07–11.39 wt.%), V (275–336 ppm), Cr (370–467 ppm) and Ni (78.3–120 ppm), with high Mg# (63–67), flat CI-normalized REE distribution and depleted ?Hf(t) values (2.03–5.35), showing tholeiitic affinities and geochemical characteristics similar to those of mid-ocean ridge basalts. They were derived from low degree (about 5–15%) partial melting of a fertile spinel lherzolite source, which have been metasomatized by fluids introduced to the mantle by former subducted slab. The geologic–petrologic evidence suggests that the mafic dykes were emplaced in a shift tectonic setting related to continental rifting, which was caused by the extensional collapse related to the lithospheric thinning after the Prototethys orogeny. The delamination-induced thermal disturbance and extensional decompression triggered partial melting of the mantle and the emplacement of the mafic dykes. Combined with previous work, we propose that the Middle Devonian mafic dykes may be the early magmatic response to the transition from Prototethys to Paleotethys marking the opening of the Paleotethys in the East Kunlun orogenic belt.  相似文献   

18.
The Archaean gneissic basement of Shillong plateau has been traversed by number of mafic dyke swarms. At least two suites of dykes are identified in the region represented by Proterozoic Khasi greenstone related dolerites and younger Cretaceous dolerite dykes in addition to mafic alkaline dykes. The older Khasi greenstone dolerites are altered and have undergone low-grade metamorphism compared to fresh Cretaceous dykes, which are well exposed in the West Garo Hills region. All the Khasi greenstone dolerites are tholeiite in composition and range from basalt to basaltic andesite in composition and show olivine or quartz normative character. Most of the dykes show continental nature of emplacement with some overlapping oceanic tectonic setting of origin. Petrochemical study suggests that they were derived from picrites that subsequently undergone low-pressure fractionation. Palaeomagnetic study of the older Khasi greenstone related dolerites show a direction of magnetization of Dm=17, Im= +57 (α95= 23.34; K=31.5; N=24) with a palaeolatitude of 29.7°N to the Indian subcontinent that clearly support the Proterozoic dyke/dyke swarm emplacement in the region. The magnetic carrier as inferred from K-T studies is in multi domain (MD) size and cation deficient (CD) domain states.  相似文献   

19.
《地学前缘(英文版)》2018,9(6):1711-1724
The Helanshan tectonic belt(HTB) is a major tectonic divide between the Alxa and Ordos blocks in the North China Craton. The geochronology and petrogenesis of the mafic dykes in the northern HTB are keys to understanding the tectonic evolution of this belt. The mafic dykes, intruded into the Neoarchean-Paleoproterozoic metamorphic basement, are mainly composed of diabase with a mineral assemblage of plagioclase(45%-60%), pyroxene(25%-35%), minor quartz and Fe-Ti oxides. The LA-ICPMS U-Pb analysis of zircon grains from representative dykes yield a weighted mean age of 206 ± 1.9 Ma, which represents the crystallization age of the dyke. The diabases show high contents of Fe_2 O_3~T(11.88-17.55 wt.%), low contents of SiO_2(45.65-50.95 wt.%) and MgO(3.31-5.50 wt.%) with low Mg#(=100×MgO/(MgO + FeO) atomic ration) of 33-44. They are characterized by enrichment of light rare earth elements(LREEs) and large ion lithophile elements(LILEs)(e.g., Rb, Ba and Pb), and slight depletion of high field strength elements(HFSEs). These features suggest that the magma has undergone extensive fractionation of olivine and pyroxene but only minor crustal contamination during its evolution. Their high Sm contents and La/Sm ratios, and low Sm/Yb ratios indicate that magma from which the dykes formed was derived from low degree(about 5%) partial melting of an enriched garnet + spinel lherzolite mantle source. Together with regional geology, these geochemical and geochronological data suggest that the mafic dykes in the HTB were formed in an intracontinental extensional setting during the late Triassic.  相似文献   

20.
SHRIMP U–Pb zircon age, geochemical and Sm–Nd isotopic data are reported for mid-Neoproterozoic volcanic rocks and mafic intrusions in northern Guangxi (Guibei) and western Hunan (Xiangxi) Provinces along the southern margin of the Yangtze Block. The mafic igneous rocks studied are generally synchronous, dated at  765 Ma. The least-contaminated dolerite samples from Xiangxi are characterized by high εNd(T) value of 3.3 to 5.3 and OIB-type geochemical features, indicating that they were derived from an OIB-like mantle source in a continental rift setting. The spilites and gabbros in Guibei show basaltic compositions transitional between the tholeiitic and calc-alkaline series. Despite depletion in Nb and Ta relative to La and Th, they have Zr/Sm = 27–35 and Ti/V = 30–40, affinitive to intraplate basalts. Their εNd(T) values are variable, ranging from − 1.2 to 3.2 for the spilites and from − 1.7 to 2.9 for the gabbros, suggesting that these spilites and gabbros crystallized from crustal-contaminated mafic magmas derived from a metasomatised subcontinental lithospheric mantle source. We conclude that the  765 Ma mafic magmatic rocks in Guibei and Xiangxi were formed in a single continental rift setting as part of the broadly concurrent  780–750 Ma rift magmatism over much of South China, which may be related to the plume activities during the breakup of Rodinia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号