首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paul Chin  David F. Ollis   《Catalysis Today》2007,123(1-4):177-188
The air–solid photocatalytic degradation of organic dye films Acid Blue 9 (AB9) and Reactive Black 5 (RBk5) is studied on Pilkington Activ™ glass. The Activ™ glass comprises of a colorless TiO2 layer deposited on clear glass. The Activ™ glass is characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD). Using AFM, the TiO2 average agglomerate particle size is 95 nm, with an apparent TiO2 thickness of 12 nm. The XRD results indicate the anatase phase of TiO2, with a calculated crystallite size of 18 nm.

Dyes AB9 and RBk5 are deposited in a liquid film and dried on the Activ™ glass to test for photodecolorization in air, using eight UVA blacklight-blue fluorescent lamps with an average UVA irradiance of 1.4 mW/cm2. A novel horizontal coat method is used for dye deposition, minimizing the amount of solution used while forming a fairly uniform dye layer. About 35–75 monolayers of dye are placed on the Activ™ glass, with a covered area of 7–10 cm2. Dye degradation is observed visually and via UV–vis spectroscopy.

The kinetics of photodecolorization satisfactorily fit a two-step series reaction model, indicating that the dye degrades to a single colored intermediate compound before reaching its final colorless product(s). Each reaction step follows a simple irreversible first-order reaction rate form. The average k1 is 0.017 and 0.021 min−1 for AB9 and RBk5, respectively, and the corresponding average k2 is 2.0 × 10−3 and 1.5 × 10−3 min−1. Variable light intensity experiments reveal a p = 0.44 ± 0.02 exponent dependency of initial decolorization rate on the UV irradiance. Solar experiments are conducted outdoors with an average temperature, water vapor density, and UVA irradiance of 30.8 °C, 6.4 g water/m3 dry air, and 1.5 mW/cm2, respectively. For AB9, the average solar k1 is 0.041 min−1 and k2 is 5.7 × 10−3 min−1.  相似文献   


2.
The feasibility of solid particles coating in a fluid bed with a Wurster tube is studied for several types of particles and aqueous coating solutions. The model products are wheat semolina, beads of glass, alumina, resin polystyrene, plastic PMMA, with a size range between 125 and 1250 μm and densities between 500 and 2500 kg m−3. The chosen coatings are representative of those used for the food products, such as maltodextrin, acacia gum, and sodium chloride in aqueous solution.

The air flow rate suitable for a regular circulation of particles in the reactor is determined for each particle type. For each coating solution, the flow rate leading to agglomeration is considered as the maximal limit flow rate to use for coating. Then comparative coating experiments were realized.

For a similar initial load of particles, the same mass of coating was atomized (13.5 g min−1) at 50 °C. The mass of coating deposit on particle surface is increased linearly during an atomization sequence lasting 33 min. For example, for every 100 g of alumina particles, the rates are 0.48, 0.51, and 0.53 g min−1 for sodium chloride, maltodextrin, and acacia gum, respectively. We then obtain a coating efficiency between 87% and 98%.

In the specific case of sodium chloride on glass beads, the deposit of crystallized salt was linear during 10 min then stopped. Addition of acacia gum (50%) to the NaCl coating solution leads again to a linear deposit over 65 min.  相似文献   


3.
The sintering behavior and dielectric properties of the monoclinic zirconolite-like structure compound Bi2(Zn1/3Nb2/3)2O7 (BZN) and Bi2(Zn1/3Nb2/3−xVx)2O7 (BZNV, x = 0.001) sintered under air and N2 atmosphere were investigated. The pure phase were obtained between 810 and 990 °C both for BZN and BZNV ceramics. The substitution of V2O5 and N2 atmosphere accelerated the densification of ceramics slightly. The influences on microwave dielectric properties from different atmosphere were discussed in this work. The best microwave properties of BZN ceramics were obtained at 900 °C under N2 atmosphere with r = 76.1, Q = 850 and Qf = 3260 GHz while the best properties of BZNV ceramics were got at 930 °C under air atmosphere with r = 76.7, Q = 890 and Qf = 3580 GHz. The temperature coefficient of resonant frequency τf was not obviously influenced by the different atmospheres. For BZN ceramics the τf was −79.8 ppm/°C while τf is −87.5 ppm/°C for BZNV ceramics.  相似文献   

4.
Zirconium doped SiC with a surface area from 88 to 200 m2 g−1 was synthesized using the shape memory concept method followed by calcination in air at a temperature of ≤480°C. The material obtained was composed of β-SiC and small ZrO2 particles dispersed throughout the material matrix and a significant amount of an amorphous phase containing Si, Zr and O. Molybdenum oxycarbide, the active isomerization phase, supported on such a material displayed a similar behavior to that obtained on pure SiC for the n-heptane isomerization reaction. A comparison made with the molybdenum oxycarbide catalyst supported on pure ZrO2 showed that the Zr doped SiC was not simply made of silicon carbide coated with a layer of ZrO2 on the surface but probably an amorphous phase containing Si, Zr and O which displays a similar behavior as pure SiC.  相似文献   

5.
The microstructure and mechanical properties of 8 mol% Y2O3 fully stabilized zirconia (8Y-FSZ) with BaTiO3 additive were investigated. The introduction of BaTiO3 additive would significantly increase the density and the grain size of 8Y-FSZ ceramics. XRD, Raman spectroscopy, and dielectric measurement were performed. A rhombohedral Ba(Ti1−xZrx)O3 ferroelectric phase resulted in the composite with 5 mol% additive, while for those with higher additive content, the secondary phase changes to cubic Ba(Ti1−xZrx)O3. The fracture toughness of the xBaTiO3/(1−x)8Y-FSZ composites reached a maximum and then decreased with increasing the amount of additive. The highest value reached 6.1 MPa m1/2 for 0.05BaTiO3/0.95(8Y-FSZ) sintered at 1475 °C for 3 h, where the piezoelectric/ferroelectric secondary phase toughening played an important role. Moreover, the fracture toughness of the composites increased firstly and then decreased with increasing sintering temperature.  相似文献   

6.
In this study, photocatalytic degradation of 2,4,6-trimethylphenol (TMP), 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP), 2,4-dimethylphenol (DMP), 2,4-dichlorophenol (DCP) and 2,4-dibromophenol (DBP) has been studied by TiO2/UV. Although degraded phenolic compound concentration increased by increasing initial concentration photocatalytic decomposition rates of di- and tri-substituted phenols at 0.1–0.5 mM initial concentrations decreased when the initial concentration increased. The fastest degradation observed for TCP and the slowest for TMP. Photodegradation kinetics of the compounds has been explained in terms of Langmuir–Hinshelwood kinetics model. Degradation rate constants have been observed to be extremely depended on electronegativity of the substituents on phenolic ring. Degradation rate constant and adsorption equilibrium constant of TCP were calculated as k 0.0083 mM min−1 and K 9.03 mM−1. For TBP and TMP the values of k and K were obtained as 0.0040 mM min−1, 19.20 mM−1, and 0.0017 mM min−1, 51.68 mM−1, respectively. Degradation rate constant of DBP was similar as DCP (0.0029 mM min−1 for DBP and 0.0031 mM min−1 for DCP) whereas adsorption equilibrium constants differed (48.40 mM−1 for DBP and 30.52 mM−1 for DCP). K and k of DMP found as 83.68 mM−1 and 0.0019 mM min−1, respectively. The adsorption equilibrium constants in the dark were ranged between 1.11 and 3.28 mM−1 which are lower than those obtained in kinetics. Adsorption constants have inversely proportion with degradation rate constants for all phenolic compounds studied.  相似文献   

7.
The NO-H2-O2 reaction was studied over supported bimetallic catalysts, Pt-Mo and Pt-W, which were prepared by coexchange of hydrotalcite-like Mg-Al double layered hydroxides by Pt(NO2)42−, MoO42−, and/or WO42− and subsequent heating at 600 °C in H2. The Pt–Mo interaction could obviously be seen when the catalyst after reduction treatment was exposed to a mixture of NO and H2 in the absence of O2. The Pt-HT catalyst showed the almost complete NO conversion at 70 °C, whereas the Pt-Mo-HT showed a negligible conversion. Upon exposure to O2, however, Pt-Mo-HT exhibited the NO conversion at the lowest temperature of ≥30 °C, compared to ≥60 °C required for Pt-HT. EXAFS/XANES, XPS and IR results suggested that the role of Mo is very sensitive to the oxidation state, i.e., oxidized Mo species residing in Pt particles are postulated to retard the oxidative adsorption of NO as NO3 and promote the catalytic conversion of NO to N2O at low temperatures.  相似文献   

8.
Mono- and multi-metallic (bi- and tri-) Pt, Pd and Rh supported on cerium-promoted alumina (La Roche, SAS-1/16) catalysts were tested for activity as TWC, both fresh [G.C. Koltsakis, and A.M. Stamatelos, Progr. Energy Combust. Sci. 23 (1997) 1] and after accelerated aging. Aging consisted of a treatment at 900°C for 5 h during which an oxidizing (2.5% O2, 10% H2O, in N2) and a reducing (5.0% CO, 10% H2O, in N2) feedstream were cycled at 0.017 Hz through the catalyst. Activity tests were carried out by increasing temperature from 100 to 600°C at 3°C min−1, while two oxidizing and reducing (±0.5 A/F) feedstreams were alternately (1 Hz) fed through the reactor at 125 000 h−1 (STP). Conversion was continuously analyzed. Light-off temperature, T50, conversion at 500°C (normal running temperature), X500, and the stoichiometric window (A/F from 14.13 to 15.13) for stationary feedstreams, were determined.  相似文献   

9.
Ten weight percent BBZS (Bi2O3, B2O3, ZnO and SiO2) glass was added to x(Ba4Nd9.333Ti18O54) − (1 − x)(BaLa4Ti4O15) (BNLT, 0 ≤ x ≤ 1) composite dielectric ceramics to lower their sintering temperature whilst retaining microwave properties useful for low temperature co-fired ceramic and antenna core technology. With the addition of 10 wt% BBZS glass, dense BNLT composite ceramics were produced at temperatures between 950 and 1140 °C, depending on composition (x), an average reduction of sintering temperature by 350 °C. X-ray diffraction, scanning and transmission electron microscopy and Raman spectroscopy studies revealed that there was limited inter-reaction between BLT/BNT and the BBZS glass. Microwave property measurement showed that the addition of BBZS glass to BNLT ceramics had a negligible effect on r and τf, although deterioration in the measured quality factor (Qf) was observed. The optimised composition (xBNT − (1 − x)BLT)/0.1BBZS (x = 0.75) had r  61, τf  38 ppm/°C and Qf  2305 GHz.  相似文献   

10.
The influence of sintering and poling conditions on dielectric properties and microstructures of the system 0·125Pb(Mg1/3Nb2/3)O3−0·875Pb (Zr0·5Ti0·5)O3 was investigated. Specimens were prepared by the conventional mixed-oxide technique. On account of eliminating the pyrochlore phase and lowering the sintering temperature, the calcined 0·125PZT−0·875PMN ceramic was doped with 4PbO.B2O3 glass powder. The 4PbO.B2O3 glass frit not only has a low flow temperature, but also a high polarizability. Additions of 4PbO.B2O3 to the perovskite 0·125PMN–0·875PZT solid solution will form a liquid phase, which served as a densification aid for the ceramics. With additions of 0·2 wt% glass frit, densities in excess of 98% of theoretical were obtained after sintering at 115°C. By variation of the fabrication processes, the influence of sintering and poling conditions on the properties of the ceramics was studied.  相似文献   

11.
The degradation of high-density polyethylene (HDPE) was studied alone and in presence of silicoaluminophosphate type silicoaluminophosphate (SAPO-37) as catalyst. This material was synthesized by the hydrothermal method using tetrapropylammonium hydroxide and tetramethylammonium chloride as organic templates. The characterization by X-ray diffraction, infrared spectroscopy, thermogravimetry and scanning electron microscopy showed that typical faujasite structure for the SAPO-37 was obtained. The total acidity, determined by n-butylamine adsorption, it was equivalent to 0.558 mmol g−1, corresponding to moderate acid strength. For catalytic reaction, a physical mixture of 25%SAPO-37/HDPE was decomposed in a thermobalance at heating rates of 5, 10 and 20 °C min−1, from 380 to 520 °C. At the maximum degradation rate, the products were collected in a cold trap and analyzed by a coupled gas chromatograph/mass spectrometer. The degradation of HDPE without catalyst was carried out at the same conditions for comparison with the obtained data with SAPO-37. The HDPE alone suffers decomposition to a wide range of hydrocarbons (C5–C25) while in the presence of catalyst, light hydrocarbons (C2–C12) were obtained. By the application of the Vyazovkin model-free kinetic method, it was observed that the activation energy decreased from 290 kJ mol−1 for HDPE alone, to 220 kJ mol−1 for 25%SAPO-37/HDPE, evidencing that SAPO-37 is an effective catalyst for polyethylene degradation.  相似文献   

12.
Powders of pure and 5% ytterbium substituted strontium cerate (SrCeO3/SrCe0.95Yb0.05O3−δ) were prepared by spray pyrolysis of nitrate salt solutions. The powders were single phase after calcination in nitrogen atmosphere at 1100 °C (SrCeO3) and 1200 °C (SrCe0.95Yb0.05O3−δ). Dense SrCeO3 and SrCe0.95Yb0.05O3−δ materials were obtained by sintering at 1350–1400 °C in air. Heat treatment at 850 and 1000 °C, respectively, was necessary prior to sintering to obtain high density. The dense materials had homogenous microstructures with grain size in the range 6–10 μm for SrCeO3 and 1–2 μm for SrCe0.95Yb0.05O3−δ. The electrical conductivity of SrCe0.95Yb0.05O3−δ was in good agreement with reported data, showing mixed ionic–electronic conduction. The ionic contribution was dominated by protons below 1000 °C and the proton conductivity reached a maximum of 0.005 S/cm above 900 °C. In oxidizing atmosphere the p-type electronic conduction was dominating above 700 °C, while the contribution from n-type electronic conduction only was significant above 1000 °C in reducing atmosphere.  相似文献   

13.
Adsorption of dihydrogen onto the zeolites Na-ZSM-5 and K-ZSM-5 renders the fundamental H–H stretching mode infrared active. The corresponding infrared absorption bands were found at 4101 and 4112 cm−1 for H2/Na-ZSM-5 and H2/K-ZSM-5, respectively. Thermodynamic characterization of the adsorbed state was carried out by means of variable-temperature infrared spectroscopy; simultaneously measuring integrated band intensity, temperature and equilibrium pressure of the gas phase. For the H2/Na-ZSM-5 system, the standard adsorption enthalpy and entropy resulted to be Δ = −10.3 (±0.5) kJ mol−1 and Δ = −121 (±10) J mol−1 K−1. For H2/K-ZSM-5 corresponding values were −9.1 (±0.5) kJ mol−1 and −124 (±10) J mol−1 K−1, respectively.  相似文献   

14.
Zirconia polycrystals stabilised with 7 mol.% CaO containing 10 vol.% WC particles (Ca-PSZ/WC) were obtained by using zirconia nanopowder and WC micropowder. Cold isostatically pressed samples were pressureless sintered in argon at 1350–1950 °C. The influence of the sintering temperature and the incorporation of WC particles on the phase composition and mechanical properties of the composites were studied. Decomposition of WC due to the reaction with the zirconia matrix was found. W2C and metallic tungsten were detected as decomposition products when heat treated below 1750 °C. At higher temperatures, ZrC is formed. The mechanism of WC decomposition was discussed. The zirconia polycrystals modified with in situ formed W and W2C inclusions showed a bending strength of 417 ± 67 MPa, a fracture toughness of 5.2 ± 0.3 MPa m0.5 and a hardness of 14.6 ± 0.3 GPa.  相似文献   

15.
The effects of a forming atmosphere on the stability, the sintering and the dielectric properties of Ba5Nb4O15, BaNb2O6, ZnNb2O6 and Zn3Nb2O8 ceramics were investigated, because of the primary importance of the sintering atmosphere in relation to copper sintering. These Nb-based materials were sintered in air and in Ar/H210%. Zn-containing samples are very sensitive to the reductive atmosphere. ZnO volatilises at 800–850 °C and the resulting compound does not exhibit the expected properties. BaNb2O6 and Ba5Nb4O15 are more stable in term of relative weight loss. Nevertheless, the phase analysis reveals a modification of the BaNb2O6 phase, what induces the degradation of the dielectric property stability versus temperature. The properties of Ba5Nb4O15 are not modified by a sintering in reductive atmosphere. A relative permittivity of 38.8, a permittivity temperature coefficient of −150 ppm °C−1 and an insulating resistivity of 1010.9 Ω cm were obtained for this latter.  相似文献   

16.
The flexure creep behaviour of monolithic Al2O3 and 10 vol% SiC-particle reinforced Al2O3 matrix composites was investigated in air atmosphere at 1160 to 1400 °C and under a stress of 40 to 125 MPa. Two kinds of SiC particles with different particle sizes and oxygen contents were used in the composites, one having an average size of 0.6 μm with 1.7 vol% SiO2 impurities and the other of average size 2.7 μm with 3.4 vol% SiO2 impurities. Compared with the creep behaviour of monolithic Al2O3 the strain rate of the composites with 0.6 μm SiC particles did not decrease; however, the composites with 2.7 μm SiC particles exhibited excellent creep resistance. Microstructure analysis showed that the Al2O3 grains in the composites with 0.6 μm SiC particles were mainly equiaxed with most of the SiC particles lying at the grain boundaries or triplegrain junctions, whereas the grain features of the composites with 2.7 μm SiC particles were irregular and elongated and most of the SiC particles were entrapped into Al2O3 matrix grains. It was revealed that the entrapment of 2.7 μm SiC particles into Al2O3 matrix grains was related to the high SiO2 impurity content on SiC particle surfaces, and the change of grain morphology and the good high-temperature oxidation resistance were responsible for the creep resistance increase of the composites with 2.7 μm SiC particles.  相似文献   

17.
A series of CuO–ZnO/Al2O3 solids were prepared by wet impregnation using Al(OH)3 solid and zinc and copper nitrate solutions. The amounts of copper and zinc oxides were varied between 10.3 and 16.0 wt% CuO and between 0.83 and 7.71 wt% ZnO. The prepared solids were subjected to thermal treatment at 400–1000°C. The solid–solid interactions between the different constituents of the prepared solids were studied using XRD analysis of different calcined solids. The surface characteristics of various calcined adsorbents were investigated using nitrogen adsorption at −196°C and their catalytic activities were determined using CO-oxidation by O2 at temperatures ranged between 125°C and 200°C.

The results showed that CuO interacts with Al2O3 to produce copper aluminate at ≥600°C and the completion of this reaction requires heating at 1000°C. ZnO hinders the formation of CuAl2O4 at 600°C while stimulates its production at 800°C. The treatment of CuO/Al2O3 solids with different amounts of ZnO increases their specific surface area and total pore volume and hinders their sintering (the activation energy of sintering increases from 30 to 58 kJ mol−1 in presence of 7.71 wt% ZnO). This treatment resulted in a progressive decrease in the catalytic activities of the investigated solids but increased their catalytic durability. Zinc and copper oxides present did not modify the mechanism of the catalyzed reaction but changed the concentration of catalytically active constituents (surface CuO crystallites) without changing their energetic nature.  相似文献   


18.
This paper reports studies of the photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide in a sparged photoelectrochemical reactor.

Two types of titanium dioxide electrode have been used. ‘Thermal’ electrodes were made by oxidation of titanium metal mesh; ‘sol–gel’ electrodes were made by depositing and then heating a layer of titania gel on titanium mesh. Cyclic voltammetry was used to carry out an initial characterisation and optimisation of both electrode types. The best ‘thermal electrodes’—i.e. those with the highest photocurrents—were prepared by heating titanium mesh at 700 °C in air. For sol–gel derived electrodes, optimum performance was obtained by heating at 600 °C. These electrodes were then used, in a gas sparged reactor, to disinfect E. coli suspensions with an initial concentration of 107 colony forming units (cfu) ml−1. Films prepared by the oxidation of titanium metal were shown to be superior to sol–gel derived films. Direct experimental comparison demonstrates that the photoelectrochemical system is more efficient than photocatalytic disinfection effected by slurries of Degussa P25 titanium dioxide.

Since in practical systems the TiO2 would be exposed to a variety of species additional to those that are targeted, we also examined the effects of H2PO4 and HCO3 ions on the measured disinfection rates. Phosphate addition poisons both the electrode and particulate-slurry systems and is only partially reversible. By contrast, although bicarbonate addition affects all three systems, the effects are reversible.  相似文献   


19.
Effect of electrical ageing (EA) on the field emission parameters of thin multiwall carbon nanotube composite (t-MWCNTs-composite) was studied. Initially, t-MWCNTs were mixed with -terpineol and ethyl cellulose and subjected to three roll milling process to obtain t-MWCNTs-composite. Following this, the composite was screen printed on a conducting substrate, annealed for 10 min and employed to the electrical ageing process for a period of 6 h. The ageing, on each cathode layer, was repeated for five times and JE characteristics have been collected before and after each ageing attempt. The analysis revealed that, the magnitude of threshold turn-on-field gradually increased from its virgin value of 1.223 to 1.968 V µm− 1 and corresponding mean field enhancement factor, γm, gradually decreased from 2700 ± 210 to 1940 ± 30 with a sequential increase in the ageing attempts. The degradation rate, δJt, estimated for untreated and EA samples, indicated that the magnitude of δJt reached to an equilibrium value of ~ 0.785 μA cm− 2 min− 1, which shows a stable emission state of the emitters. To investigate the effect of EA on the physical state of the emitters, a few virgin and all EA samples were subjected to scanning electron microscopy, micro Raman spectroscopy and X-ray photoelectron spectroscopy. The details of the analysis are presented.  相似文献   

20.
Based on the RBAO technology, low-shrinkage mullite/SiC/ Al2O3/ZrO2 composites were fabricated. A powder mixture of 40 vol% Al, 30 vol% A12O3 and 30 vol% SiC was attrition milled in acetone with TZP balls which introduced a substantial ZrO2 wear debris into the mixture. The precursor powder was isopressed at 300–900 MPa and heattreated in air by two different cycles resulting in various phase ratios in the final products. During heating, Al oxidizes to Al2O3 completely, while SiC oxidizes to SiO2 only on its surface. Fast densification (at >1300°C) and mullite formation (at 1400°C) prevent further oxidation of the SiC particles. Because of the volume expansion associated with the oxidation of Al (28%), SiC (108%), and the mullitization (4.2%), sintering shrinkage is effectively compensated. The reaction-bonded composites exhibit low linear shrinkages and high strengths: shrinkages of 7.2%, 4.8%, and 3%, and strengths of 610, 580, and 490 MPa, corresponding to compaction pressure of 300, 600, and 900 MPa, respectively, were achieved in samples containing 49–55 vol% mullite. HIPing improved significantly the mechanical properties: a fracture strength of 490 MPa and a toughness of 4.1 MPa.m1/2 increased to 890 MPa and 6 MPa.m1/2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号