首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
滚动轴承处于早期故障阶段时,故障冲击特征成分难以提取,为了从轴承故障振动信号中提取特征参数,对轴承故障振动信号进行变分模态分解(Variational Mode Decomposition,VMD),得到若干个本征模态分量(IMFs),计算各个IMF的能量熵与样本熵,并利用主成分分析方法(PCA)对其进行特征融合。最后利用粒子群算法(PSO)优化的支持向量机(SVM)对融合特征进行故障模式识别。轴承故障实验分析结果表明,所提方法能够有效实现滚动轴承故障诊断。  相似文献   

2.
《机电工程》2021,38(5)
针对支持向量机(SVM)应用在轴承故障分类时,传统的智能算法优化SVM的参数容易存在寻优速度慢、调节参数多,以及容易陷入局部最优值等问题,提出了一种基于CEEMDAN多尺度熵与SSA-SVM相结合的故障诊断方法。对滚动轴承的故障特征提取和SVM参数优化进行了研究,引入了一种新的群智能优化算法,用麻雀搜索算法(SSA)对SVM参数进行了优化,提高了寻优速度以及轴承的故障分类准确率;该方法先采用自适应白噪声完整经验模态分解(CEEMDAN)算法分解信号,获得了若干个固有模态函数(IMF);再采用相关系数方法选择有用IMF分量,并进行了重新组合;最后,计算重构信号的多尺度熵作为特征向量,输入SSA优化的SVM进行了故障分类。研究结果表明:采用该方法能够准确地获得故障信息,且识别准确率高;与PSO、GA优化的SVM相比,该方法的故障诊断分类性能更好。  相似文献   

3.
4.
针对滚动轴承早期故障特征微弱,无法对轴承状态进行有效辨识的特点,提出基于EMD幅值熵和支持向量机的故障诊断方法。首先通过经验模态分解的自适应性将振动信号分解为不同时间尺度的本征模态函数IMFs,然后从分解的IMFs中分别提取瞬时幅值香农熵构造故障特征集,最后通过支持向量机对提取的故障特征集进行分类识别。滚动轴承实验结果表明,所提方法相比基于EMD和AR模型的故障诊断方法效果更好,诊断识别率达到100%。  相似文献   

5.
针对滚动轴承振动信号故障难以识别的问题,创建一种应用改进鲸鱼优化算法(IWOA)优化支持向量机(SVM)的故障诊断模型。首先将轴承振动信号特征通过VMD的方式提取;其次,为改进鲸鱼优化算法,采取精英反向学习策略增强种群的广泛性,选用非线性因子并加入随机扰动策略增强探索能力;通过4组基准测试函数,将IWOA与4种优化算法对照分析,验证了此改进算法的优越性;最后,将SVM的惩罚参数和核函数参数放入IWOA中,构建IWOA-SVM故障分类模型。故障诊断的结果表明,用IWOA-SVM分类模型在故障诊断中拥有更好的效果,准确率达到100%。  相似文献   

6.
《机械传动》2017,(9):179-182
针对滚动轴承早期微弱故障特征容易淹没于环境噪声中而难以提取的问题,提出了最小熵解卷积(MED)降噪和变分模态分解(VMD)相结合的滚动轴承早期故障诊断方法。首先以峭度最大为准则利用MED对轴承振动信号进行降噪处理,然后采用新的高精度多分量信号分解方法——VMD将降噪信号分解为若干个分量,最后通过分析最大峭度分量包络谱中故障频率成分诊断轴承故障。轴承实验分析结果表明了该方法的有效性。  相似文献   

7.
现实工程中难以获得大量轴承故障样本,因此大多采用支持向量机进行分类,而传统的智能优化算法优化支持向量机,容易陷入局部最优解,寻优时间长,并且需要人为干预。本文提出了一种自适应变分模态分解(adaptive variational modal decomposition,AVMD)与黏菌算法(slime mould algorithm,SMA),对支持向量机(support vector machine,SVM)进行智能优化的故障诊断方法,用更合理的惩罚参数与核参数使构建的SMA-SVM模型对小样本数据进行快速准确分类。该方法首先利用AVMD方法对故障信号进行分解,然后计算各IMF分量的样本熵作为特征向量,最后将特征向量输入到所提出的SMA-SVM模型中进行故障识别。并将其与以往传统的优化算法,如遗传算法、粒子群算法的优化支持向量机等故障诊断方式相比较。结果表明,所提出的故障识别方法准确率高,并且缩短了寻优时间,相较于其他方法展现了其优越性,该方法可有效用于轴承的故障诊断。  相似文献   

8.
针对滚动轴承早期故障阶段存在特征信号微弱、故障识别相对困难的问题,提出了融合改进变分模态分解和奇异值差分谱的诊断方法。原始信号经改进变分模态分解方法处理后,被分解为若干本征模态函数分量,利用包络谱稀疏度指标筛选出最佳分量构造Hankel矩阵并进行奇异值分解,求取奇异值差分谱后,根据差分谱中的突变点重构信号,最终通过分析信号的包络谱可判断轴承的故障类型。利用改进变分模态分解融合奇异值差分谱的方法对轴承故障模拟及实测信号进行分析,均成功提取出微弱特征信息,能够实现滚动轴承早期故障的有效判别,具有一定的可靠性和应用价值。  相似文献   

9.
李梅红  连威 《机械传动》2019,43(3):161-165
为提高齿轮的故障诊断效果,提出了基于变分模态分解(Variational Modal Decomposition,VMD)和符号熵(Symbol Entropy, SE)的齿轮故障诊断方法。首先,利用VMD对齿轮故障振动信号进行分解,得到若干个本征模态分量(Intrinsic Mode Function,IMF);然后,计算IMF分量的符号熵,并将IMF符号熵组成齿轮故障特征向量;最后,将特征向量输入SVM进行故障诊断。齿轮故障诊断实测结果验证了该方法的有效性和优势。  相似文献   

10.
提出了一种基于最小熵解卷积和变分模态分解以及模糊近似熵的故障特征提取方法,并采用优化支持向量机对故障进行识别分类。首先利用最小熵解卷积方法降低噪声干扰并增强故障信号中故障特征信息,进而对降噪后的信号进行变分模态分解,并利用模糊近似熵量化变分模态分解后包含故障特征信息的模态分量以构建特征向量,之后通过采用扩展粒子群算法优化惩罚因子和核函数参数的支持向量机,对故障样本训练并完成故障识别分类。将所提方法应用于滚动轴承不同损伤程度、不同故障部位的实验数据,验证了该方法的有效性。与基于局部均值分解的特征提取方法相对比,结果表明所提方法可以更精确地提取出滚动轴承故障特征,并能够更准确地完成不同故障的识别;通过与基于网格寻优算法优化的支持向量机方法和基于扩展粒子群优化的最小二乘支持向量机方法相对比,结果表明所提方法具有更好的分类性能,能达到更好的诊断效果。  相似文献   

11.
针对滚动轴承发生故障时,振动信号的时域和频域特征都会发生变化的特点,提出了基于集合经验模态分解(EEMD)、改进果蝇优化算法(MFFOA)和支持向量机(SVM)的滚动轴承故障诊断方法。该方法主要是利用EEMD方法对故障信号进行分解,并计算各IMF分量的均方根值和重心频率,以此进行归一化处理得到特征向量。为了提高诊断精度,采用果蝇优化算法优化SVM参数,建立MFFOA-SVM模型,然后对提取的特征向量进行训练与测试,从而识别故障与否及发生点蚀故障的程度。利用该方法对实测信号进行分析与诊断,并与遗传算法的优化结果进行对比,验证了该方法的有效性,说明其具有良好的应用前景。  相似文献   

12.
针对滚动轴承的早期故障特征微弱的特点,提出了自适应噪声完备集合经验模态分解(CEEMDAN)与多尺度排列熵(MPE)结合提取故障特征,采用支持向量机(SVM)进行故障状态判别的滚动轴承早期故障诊断方法。利用CEEMDAN将信号分解为若干分量,计算各分量与原信号的相关系数,将大于相关系数阈值的分量重构,对MPE的参数运用PSO算法寻优,计算重构后的信号的MPE值并作为故障特征向量,使用SVM对故障状态进行识别。将该方法运用于XJTU-SY滚动轴承加速寿命试验数据集,并与MPE参数未优化以及未CEEMDAN分解且MPE参数未优化得到的MPE值作为特征向量SVM进行识别的结果进行对比,结果表明本文所提方法的故障识别率分别提高了10.71%和14.28%。  相似文献   

13.
针对滚动轴承数据信号不稳定、非线性的特性,提出一种采用集合经验模态分解(EEMD)、希尔伯特(Hilbert)变换实现特征提取,改进教与学算法(ITLBO)优化支持向量机(SVM)参数的滚动轴承故障诊断方法。首先通过EEMD方法将目标信号分解成若干个模态函数,采取Hilbert变换获得模态函数的瞬时频率;对模态函数和其瞬时频率进行统计特征提取并实现特征变量降维,提高诊断效率;最后利用ITLBO算法优化SVM参数,构造ITLBO_SVM诊断模型进行多分类故障诊断。实例证明,信号经过EEMD分解和Hilbert变换再提取特征信息,代入ITLBO_SVM的优化模型比传统的粒子群算法优化模型的正确率更高,效果更稳定,验证了该方法的可行性与有效性。  相似文献   

14.
基于EEMD和CS-SVM的滚动轴承故障诊断研究   总被引:1,自引:0,他引:1  
针对数据驱动的滚动轴承故障诊断大多采用支持向量机进行分类,而传统支持向量机的分类方法容易陷入局部最优,无法准确进行故障诊断的问题,对滚动轴承振动信号的特征选择和支持向量机的优化方法进行了研究。分析了粒子群算法优化支持向量机和遗传算法优化支持向量机的不足;基于莱维飞行的布谷鸟搜索算法,引入了一种对支持向量机的参数进行寻优的方法,用于提高滚动轴承故障诊断的识别准确率;该方法首先使用集合经验模态分解对信号数据进行了处理,然后计算本征模态函数的均方根作为特征向量,输入布谷鸟搜索算法优化的支持向量机;最后进行了训练和测试。研究结果表明:利用该方法对实测信号进行分析和诊断,可以准确地识别故障发生的位置以及严重程度;通过与传统优化方法进行对比,验证了该算法的优越性。  相似文献   

15.
针对强噪声环境下齿轮早期故障特征信号微弱,故障特征信息难以提取的问题,提出了变分模态分解(Variational Mode Decomposition,VMD)和最小熵反褶积(Minimum Entropy Deconvolution,MED)的诊断方法。首先,利用VMD对采集到的齿轮故障振动信号进行自适应分解,得到一系列窄带本征模态分量(band-limited intrinsic mode functions,BLIMFS),由于噪声的干扰,从各个模态分量的频谱中很难对故障做出正确的判断;然后依据相关系数准则,选取包含故障特征信息较丰富的分量进行MED滤波处理以消除噪声影响,凸显故障特征信息。最后对降噪后的信号进行Hilbert包络解调分析,即可从包络谱中准确地识别齿轮故障特征频率。通过仿真信号和齿轮箱实验数据对所提方法进行了验证,结果表明,该方法能够有效地降低噪声的影响,准确地提取齿轮早期故障信号中微弱的特征信息。  相似文献   

16.
针对电动机轴承早期故障信号非线性非平稳性特征,造成故障信号特征提取和故障诊断困难,提出一种改进的基于添加自适应白噪声的完备集合经验模态分解与支持向量机结合的电动机轴承故障诊断方法。将美国凯斯西储大学测得的电动机轴承正常运行、滚动针体故障、外圈故障、内圈故障共4种信号分别用CEEMDAN和EEMD进行分解,得到多个模式分量,再将IMF能量法计算得到的特征向量引入支持向量机,进行电动机轴承故障识别。试验对比研究表明,该方法能更有效进行电动机轴承早期故障识别。  相似文献   

17.
《机电工程》2021,38(9)
针对滚动轴承早期微弱故障难以检测和故障诊断率不高的问题,提出了一种基于参数优化的变分模态分解(VMD)和改进的深度置信网络(DBN)的故障诊断方法。首先,为了消除人为选择VMD参数的影响,采用了鲸群算法(WOA)寻优VMD算法的最佳模态分解个数和惩罚因子的参数组合;然后,利用参数优化后的VMD算法分解了滚动轴承振动信号,分解后的本征模态分量(IMF)求频谱后组成了高维数据集;最后,直接输入麻雀搜索算法(SSA)优化的深度置信网络进行了模式识别。研究结果表明:针对滚动轴承的故障,相同模式识别方法VMD算法故障识别率为97.4%,相比于EMD算法96.5%的故障识别率更高;相同信号处理方法下,DBN网络故障诊断率为98.7%,相比于SVM算法97.4%故障诊断率更高;WOA-VMD-SSA-DBN算法的故障诊断率达到了100%,故障诊断的效果得到了进一步提升。  相似文献   

18.
基于经验模态分解的滚动轴承故障诊断方法   总被引:13,自引:1,他引:13  
杨宇  于德介  程军圣 《中国机械工程》2004,15(10):908-911,920
提出了一种基于经验模态分解的滚动轴承故障诊断方法,并定义了能量熵的概念。从不同状态的滚动轴承振动信号的能量熵值中发现,当滚动轴承发生故障时,各频带的能量会发生变化。为了进一步对滚动轴承的状态和故障类型进行分类,再从若干个包含主要故障信息的IMF分量中提取能量特征参数作为神经网络的输入参数来识别滚动轴承的故障类型。对滚动轴承的正常状态、内圈故障和外圈故障振动信号的分析结果表明,以经验模态分解为预处理器提取各频带能量作为特征参数的神经网络诊断方法比以小波包分析为预处理器的神经网络诊断方法有更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类别。  相似文献   

19.
张燕霞  户文刚 《机电工程》2022,39(3):324-329
旋转机械的振动信号具有非线性、非平稳特点,同时其早期的微弱故障信号易受噪声的干扰,因此在故障诊断中难以提取其故障特征,识别其故障类型,针对这一问题,提出了一种基于变分模态分解(VMD)-奇异值分解(SVD)和支持向量机(SVM)的旋转机械故障诊断方法.首先,对原始振动信号进行了VMD分解,并得到了其若干个分量信号;然后...  相似文献   

20.
由于行星齿轮箱振动信号的故障特征难被提取,故采用变分模态分解(VMD)能量熵与支持向量机(SVM)相结合的方式实现行星齿轮箱故障诊断.首先利用VMD方法将振动信号分解为不同尺度的内禀模态函数(IMF)并提取各IMF的能量熵值构成特征矩阵,其次利用粒子群算法(PSO)对支持向量机的惩罚因子和核函数优化,最后将特征矩阵输入支持向量机进行故障模式识别.通过行星齿轮箱的实验研究,验证了该方法的有效性并且识别准确率高达99.625%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号