首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The paper focused on an experimental study on the microstructural, mechanical, and wear characteristics of 15 wt.% alumina (Al2O3) particulates with an average particle size of 20 µm, reinforced in Al2014 alloy matrix composite as-cast and heat-treated samples. The metal matrix composite (MMC)samples were produced via a novel two-stage stir-casting technique. The fabricated composite samples were subjected to evaluate hardness, tensile strength, fatigue behavior and wear properties for both as cast and T6 heat-treated test samples. The Al2014 alloy and Al2014-15 wt.% Al2O3 MMCs were in solution for 1 h at a temperature of 525 °C, quenched instantly in cold water, and then artificially aged for 10 h at a temperature of 175 °C. SEM and X-ray diffraction analyses were used to investigate the microstructure and dispersion of the reinforced Al2O3 particles in the composite and the base alloy Al2014. The obtained results indicated that the hardness, tensile and fatigue strength and wear resistance increased when an amount of Al2O3 particles was added, compared to the as-cast Al2014 alloy and it was observed that after subjecting the same composite samples to heat treatment, there was further enhancement in the mechanical and wear properties in the Al2014 matrix alloy and Al2014-15 wt.% Al2O3 composite samples.  相似文献   

2.
The isothermal oxidation of Fe-28Al-5Cr (at%) intermetallic alloy microalloyed with Zr and B (<0.08 at%) in air atmosphere, in the temperature range of 1000 to 1200 °C, was studied. The investigation was carried out on the thin-walled (<1 mm) elements prepared by Laser Engineered Net Shaping (LENS) from alloy powder of a given composition. Characterization of the specimens, after the oxidation, was conducted using X-ray diffraction (XRD) and scanning electron microscopy (SEM, with back-scatter detector (BSE) and energy-dispersive X-ray spectroscopy (EDS) attachments). The investigation has shown, that the oxidized samples were covered with a thin, homogeneous α-Al2O3 oxide layers. The intensity of their growth indicates that the material lost its resistance to oxidation at 1200 °C. Structural analysis of the thin-walled components’ has not shown intensification of the oxidation process at the joints of additive layers.  相似文献   

3.
In this study, the effects of adding TiB2 particles to eutectic Al + Mg2Si phases in aluminum alloys were analyzed. The eutectic Al + Mg2Si phases were modified effectively when a large amount of TiB2 was added, and changes in the shape, size, and distribution of the eutectic Al + Mg2Si phases were confirmed using a polarizing microscope and FE-SEM. The crystal structure of the TiB2 particles and Mg2Si phases were analyzed using HR-TEM, and the analysis confirmed that the TiB2 particles can act as heterogeneous nucleation sites. This paper intends to clarify the principle of phase modification of the eutectic Al + Mg2Si phases by TiB2 particles and proposes a new mechanism to improve Mg2Si phase modification when TiB2 particles are added.  相似文献   

4.
In this study, ceramic–metal composites in the Al2O3/Ti/Ni system were fabricated using the slip casting method. Two series of composites with 15 vol.% metal content and different solid phase contents were obtained and examined. A proper fabrication process allows obtaining composites enhanced by intermetallic phases. The microstructure of the base powders, slurries, and sintered composites was analyzed by scanning electron microscope. Analysis of the sedimentation tendency of slurries was carried out. The phase composition of the sintered samples was examined by X-ray diffraction analysis. A monotonic compression test was used to investigate the mechanical properties of the composites. A fractography investigation was also carried out. The research conducted revealed that the slip casting method allows the obtaining of composites enhanced by intermetallic phases (TiNi, Ni3Ti). The results show the correlation between solid-phase content, microstructure, and mechanical properties of the composites.  相似文献   

5.
The uneven distribution and large size of the second phase weakens the effect of dispersion strengthening in ODS-W alloys. In this article, the W-Al2O3 composite powders were fabricated using a wet chemical method, resulting in a finer powder and uniformly dispersed Al2O3 particles in the tungsten-based alloy. The particle size of the pure tungsten powder is 1.05 μm and the particle size of W-0.2 wt.%Al2O3 is 727 nm. Subsequently, the W-Al2O3 alloy plates were successfully obtained by induction sintering and rolling processes. Al2O3 effectively refined grain size from powder-making to sintering. The micro-hardness of the tungsten alloy plates reached 512 HV0.2, which is 43.7% higher than that of pure tungsten plates. The nano-hardness reached 14.2 GPa, which is 24.1% higher than that of the pure tungsten plate; the compressive strength reached 2224 MPa, which is 37.2% higher than that of the pure tungsten.  相似文献   

6.
Boron and its alloys have long been explored as potential fuel and increasingly replace pure aluminum powder in high-energy formulations. The ignition and burning properties of boron can be improved by making boron alloys. In this study, an Mg–Al–B alloy was synthesized from magnesium, aluminum and boron powders in a 1:1:4 molar ratio by preheating to 600 °C for 30 min, followed by high-temperature sintering in a tube furnace. The effects of sintering temperature (700–1000 °C) and holding time (0.5–10 h) on the phase composition of mixed powders were studied. After the samples were cooled to room temperature, they were ground into powder. The phase composition, micromorphology and the bonding forms of elements of the synthesized samples were studied using XRD, SEM and XPS. The results show that each element exists in the form of simple substance in the alloy. The influence of the sintering temperature on the synthesis reaction of Mg0.5Al0.5B2 is very important, but holding time has little effect on it. With the increase of sintering temperature, the content of the Mg0.5Al0.5B2 phase gradually increases, and the phase content of residual metal gradually decreases. The phase and morphology analyses show that the optimum sintering temperature is 1000 °C with a minimum holding time of 0.5 h. It is expected to be used in gunpowder, propellant, explosives and pyrotechnics with improved characteristics.  相似文献   

7.
Al2O3 films were prepared by the aerosol deposition method at room temperature using different carrier gas compositions. The layers were deposited on alumina substrates and the film stress of the layer was calculated by measuring the deformation of the substrate. It was shown that the film stress can be halved by using oxygen instead of nitrogen or helium as the carrier gas. The substrates were annealed at different temperature steps to gain information about the temperature dependence of the reduction of the implemented stress. Total relaxation of the stress can already be achieved at 300 °C. The XRD pattern shows crystallite growth and reduction of microstrain while annealing.  相似文献   

8.
In this study, we address the effect of vacuum heat treatment on the morphology of Al2O3-3wt.%TiO2 coating, element diffusion behavior, coating hardness, and corrosion resistance. The pores, cracks, and non-liquefied particles on the as-heat treated coating surface of the vacuum-heat-treated coating were observed and compared with the as-sprayed coating using a scanning electron microscope. The diffusion behavior of the elements in the coating was demonstrated by using a line scanning of a cross-section of the coating. Hardness and corrosion-resistance test results were used to judge the effect of a vacuum heat treatment on the coating. The research results show that compared with atmospheric heat treatment, the vacuum heat treatment had less effect on the pores, cracks, and non-liquefied particles on the surface of the coating. However, in the absence of new oxide formation, the pores and cracks in the cross-section of the coating were significantly improved by the vacuum heat treatment. The surface hardness and corrosion resistance of the coating were significantly improved. The crack defects were eliminated, and the uniformity of TiO2 distribution was improved, which are the main factors that improved the coating performance after vacuum heat treatment. The combination of the coating and the substrate is strengthened, and an Al2O3 and TiO2 interdiffusion zone is formed when the coating undergoes vacuum heat treatment, which is the main mechanism improving the performance of the AT3 coating.  相似文献   

9.
Due to the chemically inert surface of MoS2, uniform deposition of ultrathin high-κ dielectric using atomic layer deposition (ALD) is difficult. However, this is crucial for the fabrication of field-effect transistors (FETs). In this work, the atomic layer deposition growth of sub-5 nm La2O3/Al2O3 nanolaminates on MoS2 using different oxidants (H2O and O3) was investigated. To improve the deposition, the effects of ultraviolet ozone treatment on MoS2 surface are also evaluated. It is found that the physical properties and electrical characteristics of La2O3/Al2O3 nanolaminates change greatly for different oxidants and treatment processes. These changes are found to be associated with the residual of metal carbide caused by the insufficient interface reactions. Ultraviolet ozone pretreatment can substantially improve the initial growth of sub-5 nm H2O-based or O3-based La2O3/Al2O3 nanolaminates, resulting in a reduction of residual metal carbide. All results indicate that O3-based La2O3/Al2O3 nanolaminates on MoS2 with ultraviolet ozone treatment yielded good electrical performance with low leakage current and no leakage dot, revealing a straightforward approach for realizing sub-5 nm uniform La2O3/Al2O3 nanolaminates on MoS2.  相似文献   

10.
The 3YSZ/40 wt% Al2O3 composites were prepared by flash sintering at a low furnace temperature (700 °C). The effects of the current density on the relative density and Vickers hardness of the composites were systematically investigated. The results showed that the relative densities and Vickers hardness of the samples increased gradually with the increasing of the current densities, and the relative density was as high as 94.2%. The Vickers hardness of 11.3 GPa was obtained under a current density of 102 mA/mm2. Joule heating and defects generation are suggested to be the main causes of rapid densification in flash sintering. The microstructure of the molten zone showed the formation of eutectic structures in the composite, suggesting that grain boundary overheating may have contributed to the formation of the molten zone.  相似文献   

11.
In the present work, a novel Ti-Al-C-Nb composite was prepared using in situ selective laser forming (ISLF). The formation mechanism of the Ti-Al-C-Nb bulks, which were synthesized using elemental titanium, aluminum, and carbon (graphite) powders via ISLF techniques, was investigated. The results showed that the Ti3Al and TiC phases were the dominant synthesis products during the chemical reactions, and these occurred during the ISLF process. The size of the fine nanoscale crystal TiC grains could reach 157 nm at an energy level of 60 J/mm3. The porous structure of the ISLF specimens was disclosed, and an open porosity of 20–44% was determined via the scanning speed and the laser power. Both the high dynamic viscosity and the reactions of the raw powders led to the generation of a considerable number of pores, whereas the specimen processed using 45 W and 100 mm/s possessed the lowest degree of open porosity.  相似文献   

12.
A series of Al2O3–Al2TiO5 ceramic composites with different Al2TiO5 contents (10 and 40 vol.%) fabricated at different sintering temperatures (1450 and 1550 °C) was studied in the present work. The microstructure, crystallite structure, and through-thickness residual stress of these composites were investigated by scanning electron microscopy, X-ray diffraction, time-of-flight neutron diffraction, and Rietveld analysis. Lattice parameter variations and individual peak shifts were analyzed to calculate the mean phase stresses in the Al2O3 matrix and Al2TiO5 particulates as well as the peak-specific residual stresses for different hkl reflections of each phase. The results showed that the microstructure of the composites was affected by the Al2TiO5 content and sintering temperature. Moreover, as the Al2TiO5 grain size increased, microcracking occurred, resulting in decreased flexure strength. The sintering temperatures at 1450 and 1550 °C ensured the complete formation of Al2TiO5 during the reaction sintering and the subsequent cooling of Al2O3–Al2TiO5 composites. Some decomposition of AT occurred at the sintering temperature of 1550 °C. The mean phase residual stresses in Al2TiO5 particulates are tensile, and those in the Al2O3 matrix are compressive, with virtually flat through-thickness residual stress profiles in bulk samples. Owing to the thermal expansion anisotropy in the individual phase, the sign and magnitude of peak-specific residual stress values highly depend on individual hkl reflection. Both mean phase and peak-specific residual stresses were found to be dependent on the Al2TiO5 content and sintering temperature of Al2O3–Al2TiO5 composites, since the different developed microstructures can produce stress-relief microcracks. The present work is beneficial for developing Al2O3–Al2TiO5 composites with controlled microstructure and residual stress, which are crucial for achieving the desired thermal and mechanical properties.  相似文献   

13.
The effect of CeO2 content on the microstructure and properties of SiCp/Al-Si composites prepared by powder metallurgy was studied, and the mechanism of CeO2 in composites was deeply analyzed. The results show that the addition of the appropriate amount of CeO2 can refine the Si particles and improve the tensile properties of the SiCp/Al-Si composites. As the CeO2 content increases from 0 to 0.4 vol%, the particle size of the Si phase shows a tendency to decrease first and then increase, while the tensile strength, yield strength, and elongation of the composites show a trend of first increasing and then decreasing. When the CeO2 content is 0.2 vol%, the refining effect of CeO2 and the tensile properties of composites are the best. The fracture mode of SiCp/Al-Si composites with a rare earth addition is a mixed fracture. There are three main mechanisms for CeO2 in SiCp/Al-Si composites. One is when CeO2 serves as the nucleation substrate of Si phase to refine Si particles. The second is when CeO2 reacts with the alloying elements in the aluminum matrix to form a new phase, CeCu2Si2, which can not only play a role of dispersion strengthening, but also improve the bonding strength between Al matrix and Si particles. The third is the pinning effect of CeO2 and CeCu2Si2 particles on grain boundaries or phase boundaries to refine aluminum grains.  相似文献   

14.
In this study, an Al2O33D/5083 Al composite was fabricated by infiltrating a molten 5083 Al alloy into a three-dimensional alumina reticulated porosity ceramics skeleton preform (Al2O33D) using a pressureless infiltration method. The corrosion resistance of 5083 Al alloy and Al2O33D/5083 Al in NaCl solution were compared via electrochemical impedance spectroscopy (EIS), dynamic polarization potential (PDP), and neutral salt spray (NSS) tests. The microstructure of the two materials were investigated by 3D X-ray microscope and scanning electron microscopy aiming at understanding the corrosion mechanisms. Results show that an Al2O33D/5083 Al composite consists of interpenetrating structure of 3D-continuous matrices of continuous networks 5083 Al alloy and Al2O33D phase. A large area of strong interfaces of 5083 Al and Al2O33D exist in the Al2O33D/5083 Al composite. The corrosion development process can be divided into the initial period, the development period, and the stability period. Al2O33D used as reinforcement in Al2O33D/5083 Al composite improves the corrosion resistance of Al2O33D/5083 Al composite via electrochemistry tests. Thus, the corrosion resistance of Al2O33D/5083 Al is higher than that of 5083 Al alloy. The NSS test results indicate that the corrosion resistance of Al2O33D/5083 Al was lower than that of 5083 Al alloy during the initial period, higher than that of 5083 Al alloy during the development period, and there was no obvious difference in corrosion resistance during the stability period. It is considered that the elements in 5083 Al alloy infiltrated into the Al2O33D/5083 Al composite are segregated, and the uniform distribution of the segregated elements leads to galvanic corrosion during the corrosion initial period. The perfect combination of interfaces of Al2O33D and the 5083 Al alloy matrix promotes excellent corrosion resistance during the stability period.  相似文献   

15.
Owing to its excellent mechanical properties and aesthetic tooth-like appearance, lithium disilicate glass–ceramic is more attractive as a crown for dental restorations. In this study, lithium disilicate glass–ceramics were prepared from SiO2–Li2O–K2O–P2O5–CeO2 glass systems with various Al2O3 contents. The mixed glass was then heat-treated at 600 °C and 800 °C for 2 h to form glass–ceramic samples. Phase formation, microstructure, mechanical properties and bioactivity were investigated. The phase formation analysis confirmed the presence of Li2Si2O5 in all the samples. The glass–ceramic sample with an Al2O3 content of 1 wt% showed rod-like Li2Si2O5 crystals that could contribute to the delay in crack propagation and demonstrated the highest mechanical properties. Surface treatment with hydrofluoric acid followed by a silane-coupling agent provided the highest micro-shear bond strength for all ceramic conditions, with no significant difference between ceramic samples. The biocompatibility tests of the material showed that Al2O3-added lithium disilicate glass–ceramic sample was bioactive, thus activating protein production and stimulating the alkaline phosphatase (ALP) activity of osteoblast-like cells.  相似文献   

16.
In this study, we investigated the effect of adding two different intermetallics, Ti5Si3 and TiSi2, for the preparation of TiB2-SiC-B4C composites. As part of the research, stoichiometric composites consisting only of two phases TiB2 and SiC were obtained. The TiB2-SiC-B4C composites were prepared via pressureless sintering. The presence of the phases in the sintered composites was confirmed using X-ray diffraction and scanning electron microscopy. The SEM-EDS examination revealed that the TiB2 and SiC phases were formed during the composite process synthesis and were distributed homogeneously in the B4C matrix. The obtained results allowed us to usually exceed 2000 °C and the use of specialized equipment for firing, that is, vacuum or protective atmosphere furnaces as well as control and measurement equipment. Such an approach generates high costs that are decisive for the economics of the technological processes. In the case of our compositions, it is possible to lower the temperature to 1650 °C. The TiB2-SiC-B4C composites were classified as UHTCs.  相似文献   

17.
The high-power impulse magnetron sputtering (HiPIMS) technique is widely used owing to the high degree of ionization and the ability to synthesize high-quality coatings with a dense structure and smooth morphology. However, limited efforts have been made in the deposition of MAX phase coatings through HiPIMS compared with direct current magnetron sputtering (DCMS), and tailoring of the coatings’ properties by process parameters such as pulse width and frequency is lacking. In this study, the Cr2AlC MAX phase coatings are deposited through HiPIMS on network structured TiBw/Ti6Al4V composite. A comparative study was made to investigate the effect of average power by varying frequency (1.2–1.6 kHz) and pulse width (20–60 μs) on the deposition rate, microstructure, crystal orientation, and current waveforms of Cr2AlC MAX phase coatings. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the deposited coatings. The influence of pulse width was more profound than the frequency in increasing the average power of HiPIMS. The XRD results showed that ex situ annealing converted amorphous Cr-Al-C coatings into polycrystalline Cr2AlC MAX phase. It was noticed that the deposition rate, gas temperature, and roughness of Cr2AlC coatings depend on the average power, and the deposition rate increased from 16.5 to 56.3 nm/min. Moreover, the Cr2AlC MAX phase coatings produced by HiPIMS exhibits the improved hardness and modulus of 19.7 GPa and 286 GPa, with excellent fracture toughness and wear resistance because of dense and column-free morphology as the main characteristic.  相似文献   

18.
Microarc oxidation (MAO) layers were prepared using 8g/L Na2SiO3 + 6g/L (NaPO3)6 + 4g/L Na2WO4 electrolyte with the addition of 2g/L Ti3SiC2/Ti3AlC2 particles under constant-current mode. The roughness, porosity, composition, surface/cross-sectional morphology, and frictional behavior of the prepared MAO layers were characterized by 3D real-color electron microscopy, scanning electron microscopy, X-ray energy spectrometry, X-ray diffractometry, and with a tribo-tester. The results showed that the addition of Ti3SiC2 and Ti3AlC2 to the electrolyte reduced the porosity of the prepared layers by 9% compared with that of the MAO layer without added particles. The addition of Ti3SiC2/Ti3AlC2 also reduced the friction coefficient and wear rate of the prepared layers by 35% compared with that of the MAO layer without added particles. It was found that the addition of Ti3AlC2 particles to the electrolyte resulted in the lowest porosity and the lowest wear volume.  相似文献   

19.
The current study investigated the microstructure modification in Al–6Mg–5Si–0.15Ti alloy (in mass %) through the minor addition of Ca using Mg + Al2Ca master alloy and heat treatment to see their impact on mechanical properties. The microstructure of unmodified alloy (without Ca) consisted of primary Al, primary Mg2Si, binary eutectic Al–Mg2Si, ternary eutectic Al–Mg2Si–Si, and iron-bearing phases. The addition of 0.05 wt% Ca resulted in significant microstructure refinement. In addition to refinement, lamellar to fibrous-type modification of binary eutectic Al–Mg2Si phases was also achieved in Ca-added (modified) alloy. This modification was related to increasing Ca-based intermetallics/compounds in the modified alloy that acted as nucleation sites for binary eutectic Al–Mg2Si phases. The dendritic refinement with Ca addition was related to the fact that it improves the efficacy of Ti-based particles (TiAl3 and TiB2) in the melt to act as nucleation sites. In contrast, the occupation of oxide bifilms by Ca-based phases is expected to force the iron-bearing phases (as iron-bearing phases nucleate at oxide films) to solidify at lower temperatures, thus reducing their size. The as-cast microstructure of these alloys was further modified by subjecting them to solution treatment at 540 °C for 6 h, which broke the eutectic structure and redistributed Mg2Si and Si phases in Al-matrix. Subsequent aging treatment caused a dramatic increase in the tensile strength of these alloys, and tensile strength of 291 MPa (with El% of 0.45%) and 327 MPa (with El% of 0.76%) was achieved for the unmodified alloy and modified alloy, respectively. Higher tensile strength and elongation of the modified alloy than unmodified alloy was attributed to refined dendritic structure and modified second phases.  相似文献   

20.
Gadolinia (Gd2O3) is potentially attractive as a dispersive phase for copper matrix composites due to its excellent thermodynamic stability. In this paper, a series of 1.5 vol% nano-Gd2O3/Cu composites were prepared via an internal oxidation method followed by powder metallurgy in the temperature range of 1123–1223 K with a holding time of 5–60 min. The effects of processing parameters on the microstructure and properties of the composites were analyzed. The results showed that the tensile strength and conductivity of the nano-Gd2O3/Cu composite have a strong link with the microporosity and grain size, while the microstructure of the composite was determined by the sintering temperature and holding time. The optimal sintering temperature and holding time for the composite were 1173 K and 30 min, respectively, under which a maximum ultimate tensile strength of 317 MPa was obtained, and the conductivity was 96.8% IACS. Transmission electron microscopy observations indicated that nano-Gd2O3 particles with a mean size of 76 nm formed a semi-coherent interface with the copper matrix. In the nano-Gd2O3/Cu composite, grain-boundary strengthening, Orowan strengthening, thermal mismatch strengthening, and load transfer strengthening mechanisms occurred simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号