首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
以动静压气体径向滑动轴承为研究对象,考虑湍流润滑,基于有限差分方法求解引入湍流因子改良的可压缩雷诺润滑方程,计算湍流润滑动静压气体径向滑动轴承的压力分布,获得轴承承载力、静态刚度、交叉刚度、主刚度、交叉阻尼和主阻尼等表征动静压轴承静动态特性的基本参数,并分析偏心率、槽深、槽数、长径比等结构参数及轴颈转速和供气压力等工况对轴承静动态性能的影响规律。结果表明:连续性狭缝湍流润滑动静压气体径向滑动轴承的静态特性优于非连续性狭缝;轴承承载力随着偏心率、长期径比的增大而增大,随着槽区长度、槽深的增大而减小,槽数对承载力影响不大;轴承静态刚度随着偏心率的增大先增大后减小,随着长径比、槽深、槽数的增大而增大,随着槽区长度的增大而减小;较大的转速和供气压力有助于提升轴承的承载力和静态刚度;随着偏心率的增大,交叉刚度逐渐增大,主刚度先增大而减小,而交叉阻尼和主阻尼均增大。  相似文献   

2.
以狭缝节流动静压气体径向滑动轴承为研究对象,采用有限差分方法求解其可压缩气体润滑Reynolds方程,获得压力分布,进而获得轴承承载力、刚度、阻尼等表征滑动轴承静动态特性的参数,并分析偏心率、长径比、槽宽比等轴承的结构参数及供气压力和转速等工况对轴承动静态性能的影响规律。结果表明:在轴承其他参数确定的情况下,连续性狭缝轴承较非续性狭缝轴承具有更大的承载力和刚度;增大偏心率、长径比、供气压力和减小槽宽比均能增加轴承的承载力和刚度;大偏心率、高转速下轴承动压效应突出,可有效提高轴承的承载能力和稳定性能。  相似文献   

3.
李树森  杨非  陈群  陈宝 《润滑与密封》2023,48(10):23-29
基于仿生学原理和几何重构法,在动静压气体轴承上设计具有鸟翼轮廓仿生槽,以提高其承载能力及刚度。运用变分法求解雷诺方程并使用FLUENT软件,对鸟翼轮廓仿生槽动静压气体轴承进行静态特性仿真分析,研究轴颈转速、供气压力、偏心率、槽深以及槽偏角对轴承静态特性的影响。结果表明:在偏心率相同时,随着轴颈转速的增加,轴承承载能力和刚度随之增大,随着供气压力的增加,轴承承载能力逐渐增加、刚度逐渐减小;当气膜厚度一定时,随着槽深的增加,轴承承载能力和刚度呈现先增加后减小的趋势,随着槽偏角的增加,轴承承载能力和刚度呈现先增加后减小的趋势。  相似文献   

4.
以螺旋槽小孔节流动静压气体轴承为研究对象,运用变分法求解雷诺方程,利用Fluent软件对轴承静态特性进行仿真分析,研究供气压力、偏心率、转速以及节流孔直径、螺旋槽宽度和深度对轴承静态特性的影响规律。结果表明:相同偏心率下,随供气压力的升高,轴承静态特性增强;相同供气压力下,偏心率越大,承载能力越高,刚度越小;螺旋槽能够显著提高轴承静态特性,且转速越大,螺旋槽对轴承的动压效应越好;保证其他结构参数不变,轴承静态特性随螺旋槽宽度的增加先增大后减小,螺旋槽深度和节流孔直径越小越有利。  相似文献   

5.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

6.
谷礼新  史龙飞  杨彦涛  黄志伟 《轴承》2022,(10):133-136
通过仿真与试验对纯动压、纯静压、动静压气体径向轴承的静态性能进行了对比分析,得到了轴颈转速、偏心率、气膜的动压效应和静压效应对轴承静态承载力和静态刚度的影响规律。随着转子转速或轴承偏心率的增大,动静压轴承的径向承载力逐渐增大;当转子转速较小时,气膜的静压效应起主导作用,静态刚度随动静压轴承偏心率增大而减小;当转子转速较大时,气膜的动压效应起主导作用,静态刚度随动静压轴承偏心率的增大而增大。  相似文献   

7.
以半球螺旋槽动静压气体轴承为研究对象,建立球面动静压混合气体轴承的非线性动态润滑计算分析数学模型,采用偏导数法推导出扰动压力控制方程;在广义坐标系下,采用有限差分法对扰动压力控制方程离散化,推导出扰动压力的差分表达式;推导出半球螺旋槽动静压气体轴承刚度和阻尼系数与扰动压力之间的关系表达式;采用VC++6.0编制程序,数值计算出三维微气膜的瞬态扰动压力分布、非线性气膜力及动态刚度系数和动态阻尼系数。研究转速、偏心率及供气压力对气膜动态特性系数的影响规律,结果表明:随着转速、偏心率及供气压力的增大,气膜刚度和阻尼系数均有不同程度的变化。  相似文献   

8.
为提升有机朗肯循环(organic Rankine cycle,ORC)系统向心透平发电膨胀机静压气体轴承的承载力与刚度,采用表压比法设计了以R245fa为润滑工质的静压气体轴承,分析转子偏心率、供气孔尺寸、进气压力对静压气体轴承承载力与刚度的影响。实验结果表明:在相同供气压力下,轴承承载力与刚度随着转速的增大而增大;在相同转速下,0.7 MPa供气压力相对于其他气体供气压力轴承的承载力与刚度略高;静压气体轴承的偏心率越大承载力越大;相同供气孔直径下,静压气体轴承的承载力与刚度随着转速的升高而升高;随供气孔直径增大,静压气体轴承的承载力和刚度也随之增大。  相似文献   

9.
《轴承》2017,(9)
基于MATLAB编程,利用有限差分法耦合比例分割法求解Reynolds方程,获得静压气体轴承的压力分布;采用偏导数方法,获得静压气体轴承扰动状态下的润滑方程,求解其动态刚度系数以及动态阻尼系数。针对双排孔供气、每排8孔均布的气体轴承模型进行数值计算,分析在特定结构尺寸下静压气体轴承的运行参数(供气压力、转速、偏心率)对其动力学参数及稳定性的影响。结果表明:静压气体轴承的主刚度和主阻尼系数随供气压力及偏心率的增加而增大,主刚度随着转速的增加而增加,主阻尼系数随转速的增加而减少;低频扰动更易使气体轴承发生失稳,适当提高运行偏心率可以提高轴承稳定性。  相似文献   

10.
基于FLUENT的径向静压气体轴承的静态特性研究   总被引:5,自引:1,他引:4  
以径向静压气体轴承为研究对象,研究动压效应及偏心率对轴承静态特性的影响,采用三维建模,结构化和非结构化网格相结合,运用有限体积法对三维稳态可压缩N-S方程进行求解.结果表明:承载能力随着偏心率的增大而增大;大偏心率高转速时,动压效应对承载能力的影响不可以忽略;大偏心率时,随着转速增加,沿旋转方向,最小气膜间隙处的压力分布不断增大;当转子静止时,刚度随偏心率的增大而先增大后减小;高转速时,刚度随偏心率增加而增加;计算结果与试验结果的对比表明该计算方法能够有效进行径向静压气体轴承流场特性分析.  相似文献   

11.
针对某30 kW微型燃气轮机用静压气体轴承,开展轴承刚度、承载力及轴系临界转速特征的数值与实验研究。通过离散化可压缩雷诺方程,采用数值迭代方法,获取轴承内气膜压力分布和气膜刚度特性;采用有限元方法,研究转子-轴承系统的模态特性与临界转速;在气体轴承支撑的微型燃气轮机试验台上,采用时域振动信号和不平衡响应曲线等振动测试分析方法,获取轴系的气膜临界转速特性。研究结果表明:研究的该静压气体轴承,其转速在30 000 r/min内动压效应相对于静压效应可以忽略;轴承气膜刚度随着偏心率增大而增大,但当偏心率超过0. 8时,由于出现"静态不稳定区域"导致气膜刚度下降。数值模拟和实验都证实了转子在6 000 r/min和9 000 r/min附近出现了由气膜刚度引起的锥动临界特征。  相似文献   

12.
气体轴承转子系统低频耦合涡动特性控制的试验研究   总被引:1,自引:0,他引:1  
根据轴承转子系统的耦合调频原理,结合工程稳定性判别准则,对动静压混合气体轴承及转子系统的低频耦合涡动特性进行了试验研究。结果表明:通过调整轴承供气压力、转子旋转角速度等参数,可以改变系统固有频率与低频涡动和低频振荡频率之间的耦合关系,推迟或消除气膜振荡低频的发生,能够有效抑制低频涡动和低频振荡,从而达到提高轴系运行转速范围的目的。  相似文献   

13.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

14.
以静压径向气体轴承为研究对象,采用有限差分法(FDM)耦合比例分割法求解静压气体润滑雷诺方程,利用MATLAB软件编写计算程序,采用超松弛迭代(SOR)的方法进行数值求解,获得气膜的压力分布,计算轴承的静态承载能力。该方法与CFD计算结果具有较好的趋势一致性,最大误差低于11%。利用程序求解分析静压气体轴承的静态承载特性随供气孔排数、供气压力以及转速的变化关系。结果表明:轴承的承载能力与偏心率、供气孔排数、转速成正比关系,对于双排供气模式,其稳压区的存在能够提升轴承的承载能力,并能削弱动压效应的影响。  相似文献   

15.
为研究静压气体轴承的动静压耦合效应机制及其对流场压力分布、承载力等特性的影响,以高速静压气体轴承为研究对象,采用CFD数值仿真方法,在不同偏心率及转速条件下对流场特性、动静压耦合效应机制、承载力以及偏心角进行分析研究。研究表明:转速和偏心率变化导致的气体黏性力、压差流和气体可压缩性变化,影响流场动静压耦合效应的强度,且造成流场的周向压力分布不对称,进而导致承载力及偏心角的变化;在相同偏心率下,承载力随转速升高而单调递增,偏心角随转速升高呈现非线性变化规律;在相同转速下,当转子保持在低速范围内时,偏心角随偏心率增大而增大,高速时则相反。  相似文献   

16.
针对深浅腔液体动静压轴承的承载特性等问题,对液体动静压轴承的油膜压力场和温度场进行了仿真分析。以超高速磨削电主轴系统中常用的深浅腔液体动静压轴承为研究对象,建立了液体动静压轴承油膜的三维有限元模型,对油膜进行了网格划分,并对划分后的网格进行了质量评定;采用动网格技术实现了对油膜偏心率的变更,在不同主轴转速、偏心率的工作条件下,计算了深浅腔动静压轴承油膜压力和温度的分布情况,分析了其油膜压力分布和温度分布的变化规律;研究了转速、偏心率对动静压轴承的承载力和油膜温升的影响规律。研究结果表明:在深浅腔液体动静压轴承运转过程中,随着转速和偏心率的提高,油膜承载力和温升也随之提高,且转速对油膜温升的影响要比偏心率大。  相似文献   

17.
李树森 《润滑与密封》2018,43(7):102-106
针对精密机床主轴结构采用前后2个静压气体径向轴承时存在的安装精度难以保证,且不能自动调心的问题,设计一种新型气浮主轴结构,该气浮主轴前端支撑采用静压气体半球轴承,后端支撑采用静压气体径向轴承。基于最大承载和刚度原则对静压气体径向和半球轴承进行结构设计与优化;利用Fluent软件对径向轴承与半球轴承分别进行气膜流场特性分析,得到径向轴承和半球轴承在不同偏心率以及不同转速情况下的承载特性。结果表明:径向轴承与球轴承的承载力均随着偏心率以及供气压力的增大而逐渐增大,刚度随着供气压力的增大而增大,随着偏心率的增大逐渐减小。设计的主轴在供气压力为0.5 MPa、偏心率为0.5时,承载力和静刚度均可以满足精密加工的要求。  相似文献   

18.
对某型工程中的复杂二回路主循环系统钠泵流体动静压混合润滑轴承进行分析。采用流体动静压润滑理论,利用高级旋转机械动力学分析软件包ARMD对该型轴承进行建模和分析,揭示该型轴承相对于传统润滑轴承润滑机制的特殊性,研究不同外载荷、不同转速、不同初始偏心率下钠泵轴承的润滑性能参数及动力学特性参数的演化规律。研究结果表明:外载荷、转速和初始偏心率是影响钠泵轴承润滑性能的重要因素,最大压力、功耗、温升及刚度阻尼系数随外载荷的增大而增大,随初始偏心率增大而略有降低;最小膜厚则反之。该研究为进一步开展钠泵轴承-核主泵转子耦合系统的动力学特性的研究奠定基础。  相似文献   

19.
刘通  董志强 《润滑与密封》2023,48(5):103-109
基于 Fluent软件对单气腔和三气腔结构空气静压轴承性能进行仿真分析。借助CATIA三维软件建立静压空气轴承三维模型,利用有限体积法求解等温条件下的稳态气体润滑 Reynolds方程,分析偏心率、长径比、气膜厚度、主轴转速对轴承承载性能、空气流量的影响。结果表明:偏心率较小及低供气压力下,三气腔结构的承载力优于单气腔结构;随着供气压力的增加,三气腔结构与单气腔结构的承载力差值逐渐增大,三气腔结构的承载力优于单气腔结构;随着主轴转速的增加,三气腔结构的气膜压力分布比单气腔结构更加均匀、动压效应更明显,主轴运转时稳定性能更好,承载力更高。  相似文献   

20.
以小孔节流深浅腔动静压气体轴承为研究对象,采用Fluent软件对轴承的承载特性进行分析,研究偏心率、供气压力、主轴转速、气膜厚度、浅腔深度比等因素对轴承承载力和刚度的影响。结果表明:小孔节流深浅腔动静压气体轴承浅腔区的平均压力大于深腔区的平均压力,压力最大区域出现在浅腔末端靠近轴承端面处;随着供气压力的增加,承载力逐渐增大,但供气压力不应超过0.95 MPa;当主轴转速在3×10~5 r/min以内时,承载力和刚度随着转速的增加呈线性增长规律,当主轴转速超过3×10~5 r/min继续增加时,承载力和刚度的增长趋势明显放缓;承载力与刚度随着浅腔深度比的增加先增大后减小,当浅腔深度是气膜厚度的1~1.5倍时,承载力与刚度接近最大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号