首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method for the identification of mutational sites in human mitochondrial DNA (mtDNA) was described. It was based on the human Cambridge sequence as a relative standard sequence and a single base pair substitution in mtDNA as a unique mutational form. The partial mutational sites can be determined using this method which was characterized by combining the restriction mapping with the analysis for the table of human mtDNA potential mutational sites with rapidity and simplicity. In the meanwhile, six mtDNA mutational sites found in Chinese population were identified by means of this method.  相似文献   

2.
Zischler H 《Electrophoresis》2000,21(3):531-536
To infer the possible mutational events taking place along the interorganellar transfer of genetic material from mitochondria to the nucleus, four integrations of mitochondrial DNA (mtDNA) in the human genome were characterized together with their flanking nuclear sequences. By determining their presence/absence status in different primate species, these integrations were inferred to have occurred on the lineages leading to catarrhines (Old World monkeys and hominoids), to hominoids and to humans, respectively. In case of a polymorphic state, with respect to its presence in a certain species, each preintegration sequence was either cloned in the same species or in a primate taxon that branched off before the transfer of the mtDNA to the nucleus took place. For the four mtDNA integrations presented here, random mobilization of the mtDNA and differing mechanisms for generating free ends in the nuclear target sequences can be inferred. Additionally, no common sequence features at the preintegration sites could be observed for these integrations. Moreover, the comparisons of the sites before and after integration suggest different ways of integration. Thus, mtDNA integrations represent unique molecular recombinations in the evolutionary history and can, according to their presence/absence status in different species, help to determine the branching order in phylogenetic trees.  相似文献   

3.
Failure of mitotic checkpoint machinery leads to the chromosomal missegregation and nuclear endoreduplication, thereby driving the emergence of aneuploidy and tetraploidy population. Although abnormal nuclear ploidy and the resulting impairment of mitotic checkpoint function are typical physiological event leading to human hepatocellular carcinoma, any mutational change of mitotic checkpoint regulators has not yet been discovered. Therefore, we investigated the mutation of p31(comet), a recently identified mitotic checkpoint regulator, in human hepatocellular carcinoma. Of 51 human hepatocellular carcinoma tissue and 6 cell lines tested, five samples exhibited nucleotide sequence variations dispersed on four sites within the entire coding sequence. Among these sites with sequence substitutions, three were found to be missense mutation accompanied with amino acid change but one was a silent mutation. Of these sequence substitutions, two were present in both tumor and non-tumor liver tissues, suggesting the possibility of polymorphism. The present findings indicate that p31(comet) does not have an impact on the formation of aneuploidy and tetraploidy found in human hepatocellular carcinoma.  相似文献   

4.
Wong LJ  Chen TJ  Tan DJ 《Electrophoresis》2004,25(15):2602-2610
Mitochondrial disorders are a group of clinically and genetically heterogeneous diseases. Common recurrent mitochondrial DNA (mtDNA) point mutations account for the molecular defects of a small proportion of patients. In order to identify mtDNA mutations, comprehensive mutational analysis of the entire mitochondrial genome is necessary. We developed the temporal temperature gradient gel electrophoresis (TTGE) method to screen for mutations in mtDNA. The entire mitochondrial genome was amplified using 32 pairs of overlapping primers followed by TTGE analysis of the DNA fragments. TTGE method was first validated on 200 DNA fragments containing known mutations or polymorphisms. On TTGE, homoplasmic nucleotide substitutions show a single band shift and heteroplasmic mutations show multiple banding patterns. The known mutations or polymorphisms were correctly identified. TTGE was then used to screen for unknown mutations in the mitochondrial genome. DNA banding patterns, deviated from wild-type, suggestive of either homoplasmic or heteroplasmic mutations, were followed by direct DNA sequencing to identify the mutations. Numerous mutations and polymorphisms were detected. The results demonstrated that TTGE detects and distinguishes heteroplasmic mutations from homoplasmic polymorphisms. It also detects heteroplasmic changes in the background of a homoplasmic polymorphism. Overall, TTGE was proven to be a simple, rapid, sensitive, and effective mutation detection method.  相似文献   

5.
Mitochondrial diseases are clinically and genetically heterogeneous disorders, which make the exact diagnosis and classification difficult. The purpose of this study was to identify pathogenic mtDNA mutations in 61 Korean unrelated families (or isolated patients) with MELAS or MERRF. In particular, the mtDNA sequences were completely determined for 49 patients. From the mutational analysis of mtDNA obtained from blood, 5 confirmed pathogenic mutations were identified in 17 families, and 4 unreported pathogenically suspected mutations were identified in 4 families. The m.3243A>G in the tRNALeu(UUR) was predominantly observed in 10 MELAS families, and followed by m.8344A>G in the tRNALys of 4 MERRF families. Most pathogenic mutations showed heteroplasmy, and the rates were considerably different within the familial members. Patients with a higher rate of mutations showed a tendency of having more severe clinical phenotypes, but not in all cases. This study will be helpful for the molecular diagnosis of mitochondrial diseases, as well as establishment of mtDNA database in Koreans.  相似文献   

6.
Mutations detected in the p53 gene in human nonmelanoma skin cancers show a highly UV-specific mutation pattern, a dominance of C --> T base substitutions at dipyrimidine sites plus frequent CC --> TT tandem substitutions, indicating a major involvement of solar UV in the skin carcinogenesis. These mutations also have another important characteristic of frequent occurrences at CpG dinucleotide sites, some of which actually show prominent hotspots in the p53 gene. Although mammalian solar UV-induced mutation spectra were studied intensively in the aprt gene using rodent cultured cells and the UV-specific mutation pattern was confirmed, the second characteristic of the p53 mutations in human skin cancers had not been reproduced. However, studies with transgenic mouse systems developed thereafter for mutation research, which harbor methyl CpG-abundant transgenes as mutation markers, yielded complete reproductions of the situation of the human skin cancer mutations in terms of both the UV-specific pattern and the frequent occurrence at CpG sites. In this review, we evaluate the significance of the CpG methylation for solar UV mutagenesis in the mammalian genome, which would lead to skin carcinogenesis. We propose that the UV-specific mutations at methylated CpG sites, C --> T transitions at methyl CpG-associated dipyrimidine sites, are a solar UV-specific mutation signature, and have estimated the wavelength range effective for the solar-UV-specific mutation as 310-340 nm. We also recommend the use of methyl CpG-enriched sequences as mutational targets for studies on solar-UV genotoxicity for human, rather than conventional mammalian mutational marker genes such as the aprt and hprt genes.  相似文献   

7.
We evaluate the usefulness of a commercially available microchip CE (MCE) device in different genetic identification studies performed with mitochondrial DNA (mtDNA) targets, including the haplotype analysis of HVR1 and HVR2 and the study of interspecies diversity of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes in forensic and ancient DNA samples. The MCE commercial system tested in this study proved to be a fast and sensitive detection method of length heteroplasmy in cytosine stretches produced by 16 189T>C transitions in HVR1 and by 309.1 and 309.2 C-insertions in HVR2. Moreover, the quantitative analysis of PCR amplicons performed by LIF allowed normalizing the amplicon input in the sequencing reactions, improving the overall quality of sequence data. These quantitative data in combination with the quantification of genomic mtDNA by real-time PCR has been successfully used to evaluate the PCR efficiency and detection limit of full sequencing methods of different mtDNA targets. The quantification of amplicons also provided a method for the rapid evaluation of PCR efficiency of multiplex-PCR versus singleplex-PCR to amplify short HV1 amplicons (around 100 bp) from severely degraded ancient DNA samples. The combination of human-specific (Cyt b) and universal (16S rRNA) mtDNA primer sets in a single PCR reaction followed by MCE detection offers a very rapid and simple screening test to differentiate between human and nonhuman hair forensic samples. This method was also very efficient with degraded DNA templates from forensic hair and bone samples, because of its applicability to detect small amplicon sizes. Future possibilities of MCE in forensic DNA typing, including nuclear STRs and SNP profiling are suggested.  相似文献   

8.
IntroductionIn general,inferences aboutpopulation historyare drawn from the studies of genetic diversity incontemporary populations.However,the retrievalof ancient DNA from archaeological remains holdsthe promise to add a temporal component to suchstudies. With the invention of polymerase chairreaction(PCR) ,significant amounts of geneticinformation can be recovered from ancient relic.The analysis of DNA from ancient bones can giveimportant implication for anthropology,archaeology and mole…  相似文献   

9.
Peptidylarginine deiminase (PADI) is an enzyme which catalyzes conversion of arginine residues into citrulline residues in proteins. Citrullination is known to be related to autoimmune diseases including rheumatoid arthritis. Previous work in this laboratory succeeded in identifying citrullinated sites of human fibrinogen by mass spectrometry, but discrimination between citrullination and deamidation of asparagines and glutamine required time-consuming and labor-intensive inspection of tandem mass spectra. In this work a stable isotope is utilized to improve on a previous method for the determination of citrullinated sites by mass spectrometry. Since an oxygen atom is incorporated into the citrulline residue from H(2)O in citrullination by PADI, peptides citrullinated in 50% H(2)(18)O would show a characteristic isotope distribution different from natural abundance, and thus determination of citrullinated sites is expected to be much easier. To verify the utility of this new method, the sites of citrullination of human fibrinogen by human PADI4 were investigated using 50% H(2)(18)O. Compared with the previous method, this new method identified citrullinated sites more easily and effectively, while both the determined citrullinated sites and protein sequence coverage were unaltered.  相似文献   

10.
Benzo[a]pyrene is a major carcinogen implicated in human lung cancer. Almost 60% of human lung cancers have a mutation in the p53 tumor suppressor gene at several specific codons. An on‐line nanoLC/MS/MS method using a monolithic nanocolumn was applied to investigate the chemoselectivity of the carcinogenic diol epoxide metabolite, ( ± )‐(7R,8S,9S,10R)‐benzo[a]pyrene 7,8‐diol 9,10‐epoxide [( ± )‐anti‐benzo[a]pyrene diol epoxide (BPDE)], which was reacted in vitro with a synthesized 14‐mer double stranded oligonucleotide (5′‐ACCCG5CG7TCCG11CG13C‐3′/5′‐GCGCGGGCGCGGGT‐3′) derived from the p53 gene. This sequence contained codons 157 and 158, which are considered mutational ‘hot spots’ and have also been reported as chemical ‘hot spots’ for the formation of BPDE‐DNA adducts. In evaluating the effect of cytosine methylation on BPDE‐DNA adduct binding, it was found that codon 156, containing the nucleobase G5 instead of the mutational hot spot codons 157 (G7) and 158 (G11), was the preferential chemoselective binding site for BPDE. In all permethylated cases studied, the relative ratio for adduction was found to be G5? G11 > G13 > G7. Permethylation of CpG dinucleotide sites on either the nontranscribed or complementary strand did not change the order of sequence preference but did enhance the relative adduction level of the G11 CpG site (codon 158) approximately two‐fold versus the unmethylated oligomer. Permethylation of all CpG dinucleotide sites on the duplex changed the order of relative adduction to G5? G7 > G11 > G13. The three‐ to four‐fold increase in adduction at the mutational hot spot codon 157 (G7) relative to the unmethylated or single‐stranded permethylated cases suggests a possible relationship between the state of methylation and adduct formation for a particular mutation site in the p53 gene. Using this method, only 125 ng (30 pmol) of adducted oligonucleotide was analyzed with minimal sample cleanup and high chromatographic resolution of positional isomers in a single chromatographic run. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
MITOCHONDRIAL DNA POLYMORPHISM IN CHINESE   总被引:1,自引:0,他引:1  
Human mitochondrial DNA (mtDNA) restriction endonuclease fragment patterns were analyzed using placenta DNA isolated from 273 individuals representing four different nationalities, the Han, the Uygur, the Kazakh and the Hui populations. Thirty-eight fragment patterns (morphs) were observed with the enzyme ApaI, BamHI, EcoRl, HindIII, HinfI, HhaI, HapII, KpnI, MboI, PstI, PvuII, SacI, ScaL and XhoI. Fourteen new morphs, including some only existing in individual racial and national populations were observed, which indicates that there is a significant difference in the distribution of mtDNA morphs among various national and racial populations. By comparison with the mtDNA sequences in primate species, some mtDNA ancestral morphs were found to be retained in Oriental population today. This result provided indirect evidence that Asia may be one of the human original sources. Genetic distances among four national populations computed and employed in construction of an average linkage tree suggested that the  相似文献   

12.
Normal ageing processes are associated with an accumulation of mutations within the mitochondrial (mt) DNA. The most frequent mutation is a 4977 base pair (bp) deletion known as common deletion. In order to test the hypothesis that chronically sun-exposed skin is characterized by an increased mutation frequency of mtDNA, the mutation frequency of the common deletion between skin and another replicating tissue (the hematopoietic system) and chronically sun-exposed versus sun-protected skin was compared in the same individuals. This was done by comparing the amount of mutated mtDNA molecules with the whole mitochondrial genome in the same specimen with a semiquantitative polymerase chain reation method, thus allowing direct comparison of different tissues. In all skin specimens the common deletion could be observed. In contrast only 3 of 10 blood samples revealed detectable amounts of the common deletion. Comparison of sun-exposed versus sun-protected skin exhibited a higher content of the common deletion in sun-exposed skin in 7 of 10 individuals. Additionally, a hitherto undescribed mtDNA mutation was detected exclusively in human skin. These studies indicate that exposure of human skin to solar radiation leads to an accumulation of mtDNA mutations, possibly via oxidative damage, which may play an important role in photoageing .  相似文献   

13.
New thio- and seleno-analogs of psoralen were synthesized and analyzed for their photoreactivity toward DNA. Using oligonucleotides of denned sequence, we first showed that these derivatives predominantly generated interstrand crosslinks at 5′-TpA sites. We also observed a surprisingly high reactivity of 7H-thiopyrano[3,2-f][l]benzofuran-7-one (PSO[0-S]) with the BamHl and PstI oligomers, giving rise to the formation of crosslinks at 5′-ApT sites and of the thymidine-psoralen-cytosine type. Next, the sequence specificity in the photochemical binding of all the compounds was investigated in two DNA fragments encompassing the lacZ gene of Escherichia coli, using the T4 DNA polymerase sequencing methodology. Resulting maps demonstrated that thio-and seleno-analogs of psoralen preferentially photoreact-ed with thymine and cytosine residues. The AT-rich sequences proved to be particularly reactive sites as did adjacent thymines, especially at C-surrounding residues. Likewise, photoaddition at cytosines in CA/AC context was observed. It was highly significant that all of the derivatives exhibited similar sequence specificities with only minor differences. However, PSO(O-S) differed from the other heteropsoralens. Photoadducts occurred with a higher frequency at AC and CA dinucleotides, and new sites were detected. A comparison with 8-methoxypsor-alen photobinding is also reported. Finally, the mutagenic consequences of photoadducts induced in M13mp19 DNA by PSO(O-S) were determined in a forward system that detects all classes of mutagenic events. The high phototoxicity exhibited by PSO(O-S) could be attributed to crosslinks, and the comparison of the observed mutational specificity with the photoadduct distribution within the same gene showed that mutations were targeted at potential monoadduct sites where photolesions were detected in our footprinting experiments  相似文献   

14.
The evolution of the human mitochondrial genome is reflected in the existence of ethnically distinct lineages or haplogroups. Alterations of mitochondrial DNA (mtDNA) have been instrumental in studies of human phylogeny, in population genetics, and in molecular medicine to link pathological mutations to a variety of human diseases of complex etiology. For each of these applications, rapid and cost effective assays for mtDNA haplogrouping are invaluable. Here we describe a hierarchical system for mtDNA haplogrouping that combines multiplex PCR amplifications, multiplex single-base primer extensions, and CE for analyzing ten haplogroup-diagnostic mitochondrial single nucleotide polymorphisms. Using this rapid and cost-effective mtDNA genotyping method, we were able to show that within a large, randomly selected cohort of healthy Austrians (n = 1172), mtDNAs could be assigned to all nine major European haplogroups. Forty-four percent belonged to haplogroup H, the most frequent haplogroup in European Caucasian populations. The other major haplogroups identified were U (15.4%), J (11.8%), T (8.2%) and K (5.1%). The frequencies of haplogroups in Austria is within the range observed for other European countries. Our method may be suitable for mitochondrial genotyping of samples from large-scale epidemiology studies and for identifying markers of genetic susceptibility.  相似文献   

15.
Detection of trace amounts of allergens is essential for correct labeling of food products by the food industry. PCR-based detection methods currently used for this purpose are targeting sequences of DNA present in the cell nucleus. In addition to nuclear DNA, a substantial amount of mitochondrial DNA (mtDNA) copies are present in the cytoplasm of eukaryotic cells. The nuclear DNA usually consists of a set of DNA molecules present in two copies per cell, whereas mitochondrial DNA is present in a few hundred copies per cell. Thus, an increase in sensitivity can be expected when mtDNA is used as the target. In this study, we present a reporter probe-based real-time PCR method amplifying the mitochondrial gene of the alpha chain of adenosine triphosphate synthetase from soy. Increase in sensitivity was examined by determining the minimal amount of soy DNA detectable by mtDNA and nuclear DNA (nDNA) amplification. Additionally, the LOD of soy in a food matrix was determined for mtDNA amplification and compared to the LOD determined by nDNA amplification. As food matrix, a model spice spiked with soy flour was used. Sensitivity of PCR-based soy detection can be increased by using mtDNA as the target.  相似文献   

16.
A reliable multiplex assay procedure to detect human genetic mutations in the breast cancer susceptibility gene BRCA1 using zip-code microarrays and single base extension (SBE) reactions is described. Multiplex PCR amplification was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in subsequent multiplex SBE reactions using bifunctional primers carrying a unique complementary zip sequence in addition to a mutation-site-specific sequence. The SBE primers, terminating one base before their mutation sites, were extended by a single base at a mutation site with a corresponding biotin-labeled ddNTP. Hybridization of the SBE products to zip-code microarrays was followed by staining with streptavidin–Cy3, leading to successful genotyping of several selected BRCA1 mutation sites with wild-type and heterozygote mutant samples from breast cancer patients. This work has led to the development of a reliable DNA microarray-based system for the diagnosis of human genetic mutations. Cheulhee Jung and Seong-Chun Yim contributed equally to this work.  相似文献   

17.
Forensic analysis of mitochondrial displacement loop (D‐loop) sequences using Sanger sequencing or SNP detection by minisequencing is well established. Pyrosequencing has become an important alternative because it enables high‐throughput analysis and the quantification of individual mitochondrial DNAs (mtDNAs) in samples originating from more than one individual. DNA typing of the mitochondrial D‐loop region is usually the method of choice if STR analysis fails because of trace amounts of DNA and/or extensive degradation. The main aim of the present work was to optimize the efficiency of pyrosequencing. To do this, 31 SNPs within the hypervariable regions I and II of the D‐loop of human mtDNA were simultaneously analyzed. As a novel approach, we applied two sets of amplification primers for the multiplexing assay. These went in combination with four sequencing primers for pyrosequencing. This method was compared with conventional sequencing of mtDNA from blood and biological trace materials.  相似文献   

18.
Lee HY  Yoo JE  Park MJ  Chung U  Kim CY  Shin KJ 《Electrophoresis》2006,27(22):4408-4418
The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.  相似文献   

19.
The sequence specificity in the photoreaction (365 nm) of 6,4,4'-trimethylangelicin (TMA) with DNA fragments of the lac I gene of Escherichia coli was studied by using DNA sequencing methodology. In order to map the sites of TMA photoaddition, we took advantage of the (3'-5') exonuclease activity associated with T4 DNA polymerase, which is blocked by bulky adducts, such as furocoumarin photoadducts. A quantitative analysis of the sites of photoaddition is reported. TMA was demonstrated to photoreact with thymine and, to a lower extent, to cytosine. AT-rich sequences and TTT sites in a GC context are the most reactive sites towards TMA whereas TA, AT, CA, AC sites are weaker sites with similar reactivity. Cytosines in alternated CG sequences are also targets of TMA photobinding. We observed a less pronounced sequence specificity of TMA than that of other psoralen derivatives already studied (Sage and Moustacchi, 1987; Boyer et al., 1988). A comparison with other furocoumarins 4,4'-dimethylangelicin (4,4'-DMA), 4'-methylangelicin (4'-MA), angelicin, 4,5',8-trimethylpsoralen (TMP) and 8-methoxypsoralen (8-MOP) is also reported. The role of flanking sequence and consequently of the local conformation at the various sites of photoaddition is discussed. A preferential orientation of the TMA molecule during the intercalation in the dark is suggested. Hot alkali treatment of TMA-modified DNA did not reveal any DNA strand breakage due to photooxidized bases.  相似文献   

20.
This work was aimed at identifying nucleotide polymorphic sites in a 359 bp region of the cytochrome b (cytb) mitochondrial gene of Iberian cattle (Bos taurus). This region is widely used as target in polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) species identification studies in foodstuffs destined for human and animal consumption. Two different coexisting restriction patterns were observed in four of the six animals studied when the 359 bp DNA fragment was cleaved with PalI, HinfI, MvaI, RsaI, or MboI. The amplification of both genotypes with the mitochondrial-specific primers L14735 and H15149 revealed the absence of nuclear pseudo-cytb genes, confirming the existence of mitochondrial heteroplasmy. The two coexisting mtDNA fragments were selectively sequenced in PCR extracts in which one genotype predominated over the other, both exhibiting a sequence variation of 10.4%. From the 37 nucleotide mismatches observed between genotypes, 32 were transitions and five were transversions. While 31 of the nucleotide mismatches between genotypes resulted to be conservative at the amino acid level, six changes implied amino acid substitutions, five of them being located in the variable transmembrane region. Genetic analysis suggests the presence of an Asian background in the mitochondria of Iberian cattle: while one of the genotypes matched the published sequence for Bos taurus, the other genotype clustered with a B. primigenius indicus animal and close to an Asian Bos taurus animal. These results also suggest that a number of current PCR-RFLP species identification methods based on cytb sequences may not be reliable for the accurate detection and identification of bovine material: an alternative battery of enzymes consisting of MmeI, NlaIV, and AluI is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号