首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
直流磁控溅射制备铝薄膜的工艺研究   总被引:3,自引:0,他引:3  
陈国良  郭太良 《真空》2007,44(6):39-42
采用直流磁控溅射方法,以高纯Al为靶材,高纯Ar为溅射气体,在玻璃衬底上成功地制备了铝薄膜,并对铝膜的沉积速率、结构和表面形貌进行了研究。结果表明:A1膜的沉积速率随着溅射功率的增大先几乎呈线性增大而后缓慢增大;随着溅射气压的增加,沉积速率先增大,在一定气压时达到峰值后继续随气压的增大而减小。X射线衍射图谱表明Al膜结构为多晶态;用扫描电子显微镜对薄膜进行表面形貌的观察,溅射功率为2600W,溅射气压为0.4Pa时制备的Al膜较均匀致密。  相似文献   

2.
Nanocrystalline zirconia thin films have been deposited on borosilicate glass substrates at ambient temperature by direct current (dc) magnetron sputtering. The present study demonstrates the possibility of growing zirconium oxide films in 100% pure oxygen dc plasma. Films of thickness of the order of 500 nm have been grown using a metallic Zr target in pure oxygen plasma. Interestingly, the presence of high temperature polymorphs of ZrO2 is observed in films deposited with 40, 60 and 80% oxygen in the sputtering gas, while only the monoclinic phase is observed at lower and higher oxygen percentages. The refractive index in this range of oxygen percentages peaks at 1.85 in the dispersion free region. The crystallite size in the films varies between 11-25 nm, as calculated from X-ray diffraction patterns and is dependent on oxygen percentage in the sputtering gas. The grain sizes observed in atomic force microscope images are in the range 38 to 45 nm. The dielectric constants of the films, measured at microwave frequencies [8-12 GHz] ranged between 13-19.2.  相似文献   

3.
The Cu2O thin films were prepared on quartz substrate by reactive direct current magnetron sputtering. The influences of oxygen partial pressure and gas flow rate on the structures and properties of deposited films were investigated. Varying oxygen partial pressure leads to the synthesis of Cu2O, Cu4O3 and CuO with different microstructures. At a constant oxygen partial pressure of 6.6 × 10− 2 Pa, the single Cu2O films can be obtained when the gas flow rate is below 80 sccm. The as-deposited Cu2O thin films have a very high absorption in the visible region resulting in the visible-light induced photocatalytic activity.  相似文献   

4.
张以忱  张健  巴德纯 《真空》2006,43(6):1-4
利用镍薄膜的温度电阻特性以及磁控溅射镀膜技术设计并制备了薄膜热阻型温度传感器,为了达到较好的工作稳定性,设计了多层的复合膜系。文中分析了沉积薄膜的工作压力、电源功率、靶基距、退火温度、退火时间等制备工艺参数对热阻薄膜特性的影响,以及工艺参数对所沉积的镍薄膜的膜厚均匀度和温度电阻曲线,温度电阻系数等传感特性的影响。通过调整实验的工艺参数,最终得到电阻温度性能较好的镍薄膜温度传感器。测试结果表明薄膜传感器在0-250℃之间温度电阻曲线有较好的线性度和稳定性。  相似文献   

5.
《Thin solid films》2006,494(1-2):146-150
This work presents a study on the effect of deposition parameters on the residual stresses developed in titanium nitride (TiN) thin films deposited onto cemented carbide (WC-Co) substrates. Depositions were conducted by reactive unbalanced magnetron sputtering of a single titanium target. Six different conditions were selected, varying parameters such as bias (0, − 50 or − 100 V), power applied to the target (direct current or pulsed direct current) and, in the cases where substrate bias was zero, substrate condition (ground or floating). Pulsed power was applied at a frequency of 50 kHz and with a reverse pulse time of 1 μs. Residual stresses were evaluated through X-ray diffraction, using the sin2ψ method. Results confirmed the effect of substrate bias on the residual stresses of thin films. Additionally, it was possible to observe that by pulsing the power to the target, residual stress varies as a consequence of the increased ion energy.  相似文献   

6.
Highly conducting and transparent thin films of tungsten-doped ZnO (ZnO:W) were prepared on glass substrates by direct current (DC) magnetron sputtering at low temperature. The effect of film thickness on the structural, electrical and optical properties of ZnO:W films was investigated. All the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The electrical resistivity first decreases with film thickness, and then increases with further increase in film thickness. The lowest resistivity achieved was 6.97 × 10−4 Ω cm for a thickness of 332 nm with a Hall mobility of 6.7 cm2 V−1 s−1 and a carrier concentration of 1.35 × 1021 cm−3. However, the average transmittance of the films does not change much with an increase in film thickness, and all the deposited films show a high transmittance of approximately 90% in the visible range.  相似文献   

7.
Direct current reactive magnetron sputtering was used to deposit the thin layers of copper oxide (Cu2O) on glass substrates. A solid disc of pure copper as the target was sputtered in an argon gas under sputtering pressures varying from 0.133 to 4 Pa. The effects of the sputtering power and pressure on the structural and optical properties of Cu2O thin films were systematically studied. The deposited layers were characterized using X-ray diffraction, atomic force microscopy, profilometry and spectrophotometry. The optical transmission of the films was measured in the visible region. The increase in pressure resulted in a higher growth rate than increasing sputtering power. The increase in power produced Cu2O thin films that were detrimental to the optical transmission of the films.  相似文献   

8.
溅射功率对磁控溅射ZnO∶Al(ZAO)薄膜性能的影响   总被引:1,自引:0,他引:1  
高立华  郑玉婴 《功能材料》2015,(8):8028-8030
采用射频磁控溅射工艺,以高密度氧化锌铝陶瓷靶为靶材,衬底温度控制在室温,在玻璃基底上制备了透明导电Zn O∶Al(ZAO)薄膜。利用X射线衍射仪(XRD)、原子力显微镜(AFM)、紫外-可见光谱仪和范德堡法,系统研究了不同溅射功率对薄膜的结构、形貌及光电特性的影响。结果表明,不同溅射功率对薄膜的光透射率影响不大,而对薄膜结晶和电学性能影响较大。XRD表明薄膜为良好的c轴择优取向;可见光区(400~600 nm)平均透过率达到85%以上;在120W下沉积的薄膜电学性能达到了最佳。  相似文献   

9.
反应磁控溅射沉积氧化铜薄膜及其电化学性能研究   总被引:2,自引:1,他引:1  
刘震  吴锋  王芳 《功能材料》2007,38(7):1149-1151
以金属铜为靶材,氧气为反应气体,采用射频磁控溅射法在不同温度的不锈钢基片上制备了氧化铜薄膜电极.采用X射线衍射(XRD)和原子力显微镜(AFM)分别对薄膜的组成和形貌进行了表征分析.电化学测试表明,在基片温度为室温条件下沉积得到的薄膜电极比300℃基片温度沉积得到的薄膜电极首次放电容量高,达到785μAh/(cm2·μm),但循环100次后后者放电容量较高.用交流阻抗法测得锂离子在氧化铜薄膜中的扩散系数为2.46×10-15cm2/s.  相似文献   

10.
Y.M. Zhou  H.N. Xiao  J. He 《Vacuum》2008,83(2):286-291
Effects of deposition parameters on tantalum films deposited by direct current magnetron sputtering were studied. The results indicated that the electrical properties were relative to the oxygen and other impurities rather than to growth orientation. As the sputtering power increases from 25 to 100 W, the preferred-growth orientation of Ta films changes from (200) to (202) and the oxygen and impurities content in the films decrease. The temperature coefficient of resistance also reduces from −289.79 to −116.65 ppm/°C. The O/Ta ratio decrease and grain size reduction related to a change of electrical resistivity were observed at substrate temperatures in the range 300-500 °C. At 650 °C, partial stable α-Ta associated with a sharp decrease of the electrical resistivity was also found.  相似文献   

11.
A detailed study on the mechanical, structural and surface characteristics of nanocrystalline TiB2 films deposited on Si-100 substrates by direct current (DC) magnetron sputtering was carried out. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), nanoindentaion and X-ray diffraction (XRD) studies on these films were performed. Magnetron sputtered titanium diboride coatings had a maximum hardness of 36 GPa and elastic modulus of 360 GPa. From the XRD analyses, the films were found to grow in (00l) direction-oriented perpendicular to the substrate. The AFM analysis of the films showed the variation of grain size between 30 and 50 nm. The high-resolution AFM images revealed arrangements of atoms resembling lattice and the interplanar spacings measured on the image also showed the orientation of grains in the (001) direction. Nanoindentation studies at very shallow depths showed a continuous increase of hardness and modulus with indentation depth up to 40 nm due to tip blunting and presence of oxides on the film surface (confirmed from the XPS study). The elastic recovery was approximately 69% for 100 nm depth whereas it was 52% for 1000 nm depth.  相似文献   

12.
13.
Huafu Zhang  Hanfa Liu 《Vacuum》2010,84(6):833-9072
Transparent conducting zirconium-doped zinc oxide (ZnO:Zr) films were deposited on quartz substrates by direct current (DC) magnetron sputtering at room temperature. The influence of post-annealing temperature on the structural, morphological, electrical and optical properties of ZnO:Zr films were investigated. When annealing temperature increases from room temperature to 573 K, the resistivity decreases obviously due to an improvement of the crystallinity. However, with further increase in annealing temperature, the crystallinity deteriorates leading to an increase in resistivity. The films annealed at the optimum annealing temperature of 573 K in vacuum have the lowest resistivity of 9.8 × 10−4 Ω cm and a high transmittance of above 92% in the visible range.  相似文献   

14.
15.
K.-F. Chiu 《Thin solid films》2007,515(11):4614-4618
Thin films of lithium cobalt oxides have been deposited by ionized magnetron sputter deposition with and without substrate heating. The technique uses a built-in radio frequency coil to generate an inductively coupled plasma (ICP) confined close to the substrate. The ICP plasma results in ion bombardment on the film surface, which serves as an extra energy input during film growth. Therefore, the film properties can be modified at a relatively lower temperature. The plasma irradiation induces variations of crystallography and morphology, as characterized by X-ray diffraction and scanning electron microscopy. The deposited films were tested as cathodes for lithium batteries, and the discharge curves were measured to compare the electrochemical properties of the deposited films. Applying suitable plasma irradiation, well crystallized LiCoO2 phase was obtained at 350 °C (substrate temperature), which was much lower than the temperature (700 °C-750 °C) for conventional post anneal process. The LiCoO2 films, fabricated under in-situ plasma irradiation and a relatively lower substrate temperature (350 °C), showed a discharge potential plateau at 4.3 V-3.8 V with a capacity of ∼ 110 mAh/g as discharged to 1.5 V.  相似文献   

16.
Throughout the last years strong efforts have been made to use aluminium doped zinc oxide (ZnO:Al) films on glass as substrates for amorphous or amorphous/microcrystalline silicon solar cells. The material promises better performance at low cost especially because ZnO:Al can be roughened in order to enhance the light scattering into the cell. Best optical and electrical properties are usually achieved by RF sputtering of ceramic targets. For this process deposition rates are low and the costs are comparatively high. Reactive sputtering from metallic Zn/Al compound targets offers higher rates and a comparable high film quality in respect to transmission and conductivity. In the presented work the process has been optimised to lead to high quality films as shown by reproducible cell efficiencies of around 9% initial for single junction amorphous silicon solar cells on commercial glass substrates. The crucial point for achieving high efficiencies is to know the dependency of the surface structure after the roughening step, which is usually performed in a wet etch, on the deposition parameters like oxygen partial pressure, aluminium content of the targets and temperature. The most important insights are discussed and the process of optimisation is presented.  相似文献   

17.
Pure and 5 % Fe-doped ZnO thin films (TFs) have been successfully deposited on Al2O3 substrate from pre-doped target material by RF magnetron sputtering technique. X-ray diffraction (XRD) patterns confirm the formation of both films in single phase wurtzite structure without any extra impurity peak. The calculated average crystallite sizes are found to be 22 and 17 nm for pure and Fe-doped ZnO TFs, respectively. The broadening in XRD peaks of Fe-doped ZnO TF occurs due to decrease in crystallite size and increase in lattice strain. Field emission scanning electron microscopy images exhibit that the particles growth in Fe-doped ZnO TF is more uniform and smaller than pure ZnO. Energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy results confirm the existence of Fe dopants into ZnO matrix. The doping effect enhances the sensitivity of ZnO sensor almost three times for ethanol gas sensing, the improvement in the response time and recovery time is noticeable as the size reduction effect increases the surface to volume ratio, and resulting more numbers of ethanol gas molecules are adsorbed to produce a higher concentration of oxygen ions which leads a larger deviation in capacitance.  相似文献   

18.
Transparent conducting Al and Y codoped zinc oxide (AZOY) thin films with high transparency and low resistivity were deposited by DC magnetron sputtering. The effects of substrate temperature on the structural, electrical and optical properties of AZOY thin films deposited on glass substrates have been investigated. X-ray diffraction spectra indicate that no diffraction peak of Al2O3 or Y2O3 except that of ZnO (0 0 2) is observed. The AZOY thin film prepared at substrate temperature of 250 °C has the optimal crystal quality inferring from FWHM of ZnO (0 0 2) diffraction peak, but the AZOY thin film deposited at 300 °C has the lowest resistivity of 3.6 × 10−4 Ω-cm, the highest mobility of 30.7 cm2 V−1 s−1 and the highest carrier concentration of 5.6 × 1020 cm−3. The films obtained have disorderly polyhedral surface morphology indicating possible application in thin film solar cell with good quality and high haze factor without the need of post-deposition etching.  相似文献   

19.
20.
Y.M. Zhou  Z. Xie  H.N. Xiao  P.F. Hu  J. He 《Vacuum》2009,84(2):330-334
Double-layer Ta/TaOx films were deposited on glass substrates by direct current magnetron sputtering. The impact of the underlying TaOx on the structure and properties was also investigated using X-ray diffraction analysis, Auger electron microscopy, scanning electron microscopy and atomic force microscopy. This study finds that the structure and properties of Ta/TaOx films depends on the O2 flow during the under-layer TaOx deposition. As the O2 gas flow ratio increases from 3 to 7%, more and more oxidized amorphous TaOx films in the under-layer were formed, which caused the preferred growth orientation of upper Ta films to change from (200) to (221) systematically. Increasing the oxygen flow ratio of under-layer TaOx films also makes the average grain size of upper Ta films decrease from 10.7 to 2.2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号