首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
电纺丝技术制备无机/有机复合纳米纤维的研究进展   总被引:1,自引:0,他引:1  
静电纺丝法是一种利用聚合物溶液或熔体在强电场中进行喷射纺丝的加工技术,是获得纳米尺寸长纤维的有效方法之一。目前电纺丝技术逐渐转移到无机/有机纳米复合纤维的制备方面。回顾了近年来电纺丝技术制备无机/有机复合纳米纤维的研究进展,包括:半导体纳米粒子/聚合物复合纳米纤维的制备,无机氧化物纳米粒子/聚合物复合纳米纤维的制备以及贵金属纳米粒子/聚合物复合纳米纤维的制备。  相似文献   

2.
静电纺丝(简称电纺)技术是一种制备聚合物纳米纤维的新方法,它可制备出直径为纳米级的超细纤维,最小直径可至1 nm。电纺法制备聚合物纳米纤维具有设备简单、操作容易、成本低廉以及高效等优点,它是目前能直接连续制备聚合物纳米纤维的有效方法。本文介绍了电纺过程、原理及影响纤维性能的主要因素,综述了电纺技术在生物医学材料,复合增强纤维,无机纳米纤维等方面的应用进展,最后对电纺技术在制备聚合物纳米纤维方面的发展前景作出了展望。  相似文献   

3.
静电纺丝(电纺)技术是一种制备直径为数10 nm到数100nm纳米纤维的有效方法.本文介绍了静电纺丝中原料聚合物的类型、纺丝条件和纺丝技术等方面的研究成果,电纺纳米纤维和产品的特性及其应用.  相似文献   

4.
将静电纺丝技术应用到高分子材料研究中,可以制备聚合物纳米纤维,在众多领域有广阔的应用前景。从静电纺丝聚合物纳米纤维原理、有序性、应用的角度,简述其研究进展,并指出一些仍待解决的问题,同时对电纺聚合物纳米纤维未来发展进行了展望。  相似文献   

5.
20世纪90年代后期,科学家们对于纳米纤维制备及应用的研究达到高潮,开发了一系列制备聚合物纳米纤维的方法,如纺丝、模板合成法、相分离法、自组装法以及静电纺丝法等。与上述方法相比,静电纺制备聚合物纳米纤维具有设备简单、操作容易以及高效等特点,是制备聚合物连续纳米纤维最有效的方法。静电纺纳米纤维性能优异、应用广泛,在电子器件、生物医学领域、滤材、防护服用材料纤维增强复合材料及传感器感知膜的应用前景十分看好,产业化市场发展前景广阔。  相似文献   

6.
目前,静电纺丝技术是唯一能够直接、连续制备聚合物纳米纤维的方法。随着功能材料的发展,单一组分的聚合物纳米纤维在功能上已经不能满足现有的应用领域。由于一些纳米无机功能粉体在光学、电学、催化等方面具有优越的性能,因此逐渐发展成在聚合物中加入纳米级无机功能粉体,采用静电纺丝技术可以得到无机复合纳米纤维,不仅满足了原有的应用性能,而且在一些特殊的领域能够表现出更加优越的性能。为此本文概述了静电纺丝技术在无机复合纳米纤维制备方面的最新研究进展,分析了静电纺丝工艺在制备无机复合纳米纤维方面存在的主要问题。最后指出了静电纺丝技术制备硅藻土复合纳米纤维所面临的问题,以及应该采取的对策。  相似文献   

7.
利用一对带有异种电荷的对称共轭喷丝头,通过静电纺丝法制备了几种聚合物的连续排列有序的微/纳米纤维,并与常规静电纺丝方法制备的纳米纤维进行了比较。结果发现:利用对称共轭电纺法制备的纤维的直径比常规电纺法制备的要大2~3倍,而且纤维具有良好的排列有序性;而用常规方法制备的纳米纤维则是无规排列的。扫描电子显微镜(SEM)被用来表征制备的微/纳米纤维和纳米纤维膜。  相似文献   

8.
静电纺丝法制备聚合物功能纤维的研究进展   总被引:1,自引:0,他引:1  
静电纺丝是一种可以直接、连续制备聚合物纳米纤维的新方法。通过静电纺丝法制备的直径在几纳米到几百纳米的纤维在很多领域都有潜在的应用。简单介绍了静电纺丝的原理、发展以及在各领域的应用前景,综述了静电纺丝纤维作为功能材料在吸附过滤、导电导热和保温隔热等方面的应用,并对静电纺丝技术在制备聚合物纳米纤维功能材料方面的发展前景作出了展望。  相似文献   

9.
综述了静电纺丝制备聚苯胺导电纳米纤维的方法,包括聚苯胺的单独纺丝、聚苯胺与不同聚合物的共纺,介绍了聚苯胺导电纳米纤维在光电、能源、微型传感器以及生物医药等领域的应用情况,并对今后的应用发展进行了总结与展望.  相似文献   

10.
静电纺丝制备纳米纤维的进展及应用   总被引:3,自引:0,他引:3  
简述了静电纺丝的制备原理和影响静电纺丝纤维成形的主要工艺因素;介绍了静电纺丝法制备高分子聚合物、生物大分子、无机物纳米纤维的最新进展,以及这些纳米纤维在过滤、传感器、超疏水性材料、生物医用功能材料、纳米模板等领域的应用;指出静电纺丝制备纳米连续长丝技术亟待发展。  相似文献   

11.
Over the past decade, electrospinning has grown from a small niche process to a widely used fiber formation technique. Applying a strong electric potential on a polymer solution or melt produces nanoscale fibers. These nanofibers form non‐woven textile mats, oriented fibrous bundles and even three‐dimensional structured scaffolds, all with large surface areas and high porosity. Major applications of electrospun membranes include tissue engineering, controlled drug delivery, sensing, separations, filtration, catalysis and nanowires. This perspective article highlights many recent advances in electrospun fibers for functional applications, with an emphasis on the advantages and proposed technologies for these non‐woven fibrous scaffolds. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
Electrospinning technique was used to produce ultrafine fibers from thermoplastic polyurethane (TPU). A direct comparison between melt and solution electrospinning of TPU was provided for the evaluation of process–structure relationship. It was found that the deposition rate of melt electrospinning (0.6 g h?1) is four times higher than that of solution electrospinning (0.125 g h?1) for TPU under the same processing condition. However, the average fiber diameters of solution electrospun TPUs (220–280 nm) were much lower than those of melt electrospun TPUs (4–8 μm). The effect of processing variables including collection distance and electric field strength on the electrospun fiber diameter and morphology was also studied. The findings indicate that increasing the electric field strength yielded more electrical forces acting on polymer jet and resulted in a decrease in fiber diameter as a result of more fiber drawing in both solution and melt electrospun fibers. It was also demonstrated that increasing the collection distance led to an improvement in the solidification of melt electrospun fibers and thus less fused fibers were obtained. Finally, a close investigation of fiber structures revealed that melt electrospun TPU fibers had smooth surface, whereas solution electrospun TPU fibers showed high intensity of cracks on the fiber surface. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Electrospinning is one of the most facile and versatile techniques to prepare polymer fibers ranging from micrometers to nanometers. Although several parameters can be tuned to control the sizes and morphologies of electrospun fibers, many obstacles are still encountered as the target sizes of the fibers are getting smaller; for example, the sizes of the fibers can be effectively reduced by lowering the polymer solution concentrations but beaded or beads‐on‐string structures are usually formed. To overcome such obstacles, here a simple technique to prepare alignment‐improved and diameter‐reduced fibers without bead formation by hot‐stretching electrospun fibers at temperatures higher than the glass transition temperatures of the polymers is developed. Polystyrene and poly(methyl methacrylate) are both used in this work as model materials. The relationship between the draw ratio and diameter of the fibers is quantitatively analyzed, demonstrating the control of the fiber diameters. Moreover, higher degrees of alignment improvement at the middle part of the fibers than those at the end part is observed, which results in lower water contact angles at the middle part of the fibers. This work provides a useful post‐treatment technique to control the sizes and orientations of electrospun polymer fibers.  相似文献   

14.
In the textile industry, although there are several methods for obtaining sub‐micro‐ or nanofibres, electrospinning perhaps is the most versatile process. Electrospinning has been recognized as a feasible technique for the fabrication of continuous polymeric nanofibre yarns desired in the textile industry. Various materials including polymers, composites, ceramics and metals have been successfully electrospun into nanofibres in recent years mostly in solution and some in the melt. Potential applications based on electrospun nanofibres as a new‐generation material in the textile industry will be realized if suitable nanofibre yarns become available to textile processes like weaving, knitting and embroidery. In this review, we present, from a textile viewpoint, a comprehensive overview of processing technologies of polymeric nanofibres in the textile industry; however, the emphasis here is focused on electrospinning. In particular, we choose to concentrate on a detailed account of research activities on the yarns and fabrics composed of electrospun nanofibres. Our discussion is concluded with some personal perspectives on the future challenges for the development and optimization of yarns based on electrospun nanofibres. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
S-H. Tan  M. Kotaki 《Polymer》2005,46(16):6128-6134
Processing parameters effects on the morphology such as fiber diameter and its uniformity of electrospun polymer nanofibers was investigated. A processing map summarized effects of solutions properties and processing conditions on the electrospun nanofiber morphology was obtained. Polymer concentration, its molecular weight, electrical conductivity of solvents were found as dominant parameters to control the morphology. Based on the systematic parameter study, electrospun PLLA fibers as small as 9 nm were successfully produced.  相似文献   

16.
用一系列不同组分配比的三氯甲烷/乙醇混合溶剂分别配制质量百分比浓度为4%和6%的聚乳酸(PLA)溶液,然后在相同纺丝参数下进行电纺成形。结果发现,随着乙醇在混合溶剂中体积含量的增加,聚乳酸溶液可纺性逐渐变好,电纺纤维的宏观形态也随之改变。研究了聚乳酸的溶液性质,结果认为,溶液可纺性改善的原因是乙醇的加入增强了高分子链之间的缠结程度,同时提高了溶液的电导率;溶液表面张力和表观黏度的改变对可纺性的影响较小。  相似文献   

17.
Direct air capture (DAC) of CO2 is an emerging technology in the battle against climate change. Many sorbent materials and different technologies such as moisture swing sorption have been explored for this application. However, developing efficient scaffolds to adopt promising sorbents with fast kinetics is challenging, and very limited effort has been reported to address this critical issue. In this work, the availability and kinetic uptake of CO2 in sorbents embedded in various matrices are studied. Three scaffolds including a commercially available industrial film containing ion-exchange resin (IER), IER particles embedded in dense electrospun fibers, and IER particles embedded in porous electrospun fibers are compared, in which a solvothermal polymer additive removal technique is used to create porosity in porous fibers. A frequency response technique is developed to measure the uptake capacity, sorbent availability, and kinetic uptake rate. The porous fiber has 90% IER availability, while the dense fibers have 50% particle accessibility. The sorption half time for both electrospun fiber samples is 10 ± 3 min. Our experimental results demonstrate that electrospinning polymer/sorbent composites is a promising technology to facilitate the handleability of sorbent particles and to improve the sorption kinetics, in which the IER embedded in porous electrospun fibers shows the highest cycle capacity with an uptake rate of 1.4 mol CO2 per gram-hour. © 2018 American Institute of Chemical Engineers AIChE J, 65: 214–220, 2019  相似文献   

18.
Poly (l ‐lactide) (PLLA) fibrous yarns were prepared by electrospinning of polymer solutions in 2,2,2‐trifluoroethanol. Applying spinning from two oppositely charged needles the spontaneous formed triangle of fibers at a grounded substrate could be assembled into fibrous yarns using a device consisting of a take‐up roller and twister. The effect of processing parameters on the morphology, diameter and mechanical properties of PLLA yarns was investigated by the response surface methodology (RSM). This method allowed evaluating a quantitative relationship between polymer concentration, voltage, take‐up rate and distance between the needles' center and the take‐up unit on the properties of the electrospun fibers and yarns. It was found that at increasing concentrations up to 9 wt % uniform fibers were obtained with increasing mean diameters. Conversely, the fiber diameter decreased slightly when the applied voltage was increased. The take‐up rate had a significant influence on the yarn diameter, which increased as the take‐up rate decreased. The tensile strength and modulus of the yarns were correlated with these variables and it was found that the polymer concentration had the largest influence on the mechanical properties of the yarns. By applying the RSM, it was possible to obtain a relationship between processing parameters which are important in the fabrication of electrospun yarns. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41388.  相似文献   

19.
Electrospinning is a process of electrostatic fiber formation which uses electrical forces to produce polymer nanofibers from polymer solution. The electrospinning system consists of a syringe feeder system, a collector system, and a high power supplier. The important parameters in the morphology of electrospun polystyrene fibers are concentration, applied voltage, and solvent properties. Higher concentrations of the polymer solution form thicker fibers and fewer beads. When the concentration is 7 wt%, electrospun fibers have an average diameter of 340 nm, but as the concentration of PS increases to 17 wt%, the fiber diameter gradually thickens to 3,610 nm. The fiber morphology under different solvent mixture ratios and solvent mixtures has also been studied.  相似文献   

20.
电子纺丝成形及纤维形态结构研究   总被引:2,自引:0,他引:2  
电子纺丝是—种可能制备具有微细直径的纤维成形技术,本文介绍了电子纺丝技术的基本原理和电子纺丝成形工艺对纤维形态结构的影响以及电子纺纤维的应用前景等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号